数据质量 — 使用amazon deequ作为spark etl数据质量检测

目前,公司里数据质量检测是通过配置规则报警来实现的,对于有些表需要用shell脚本来封装hivesql来进行检测,在时效性和准确上不能很好的满足,故尝试使用Deequ来做质量检测工具。

一、官网示例

package org.shydow.deequ

import com.amazon.deequ.checks.CheckStatus
import com.amazon.deequ.constraints.ConstraintStatus
import com.amazon.deequ.{VerificationResult, VerificationSuite}
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, SparkSession}

/**
 * @author shydow
 * @date 2022-03-25
 */


object DQService {
  def main(args: Array[String]): Unit = {
    val spark: SparkSession = SparkSession.builder()
      .appName("DQC")
      .master("local[*]")
      .getOrCreate()
    val sc: SparkContext = spark.sparkContext
    sc.setLogLevel("WARN")
    import spark.implicits._

    val source: RDD[Item] = sc.parallelize(Seq(
      Item(1, "Thingy A", "awesome thing.", "high", 0),
      Item(2, "Thingy B", "available at http://thingb.com", null, 0),
      Item(3, null, null, "low", 5),
      Item(4, "Thingy D", "checkout https://thingd.ca", "low", 10),
      Item(5, "Thingy E", null, "high", 12)))
    val sourceDF: DataFrame = spark.createDataFrame(source)
    sourceDF.printSchema()

    // 质量检测
    val result: VerificationResult = DeequCheckRules.createRule(sourceDF)
    if (result.status == CheckStatus.Success) {
      println("The data passed the test, everything is fine!")
    } else {
      println("We found errors in the data:\n")

      val resultsForAllConstraints = result.checkResults
        .flatMap { case (_, checkResult) => checkResult.constraintResults }

      resultsForAllConstraints
        .filter {
          _.status != ConstraintStatus.Success
        }
        .foreach { result => println(s"${result.constraint}: ${result.message.get}") }
    }

    spark.close()
  }
}
package org.shydow.deequ

import com.amazon.deequ.{VerificationResult, VerificationSuite}
import com.amazon.deequ.checks.{Check, CheckLevel}
import org.apache.spark.sql.DataFrame

/**
 * @author shydow
 * @date 2022-03-25
 */

object DeequCheckRules {
  // 自定义规则1
  def createRule(df: DataFrame): VerificationResult = {
    VerificationSuite().onData(df)
      .addCheck(Check(CheckLevel.Error, "this a unit test")
        .hasSize(_ == 5) // 判断数据量是否是5条
        .isComplete("id") // 判断该列是否全部不为空
        .isUnique("id") // 判断该字段是否是唯一
        .isComplete("productName") // 判断该字段全部不为空
        .isContainedIn("priority", Array("high", "low")) // 该字段仅仅包含这两个字段
        .isNonNegative("numViews") //该字段不包含负数
        .containsURL("description", _ >= 0.5) // 包含url的记录是否超过0.5
        .hasApproxQuantile("numViews", 0.5, _ <= 10)
      )
      .run()
  }
}

 

二、生产中配置的一些规则

def odsTableRule(df: DataFrame) = {
    VerificationSuite()
      .onData(df)
      .addCheck(
        Check(CheckLevel.Error, "base checks")
          .isComplete("primaryKey") // primaryKey即主要字段不能为空
          .isUnique("uniqueKey") // unique即唯一主键
          .isContainedIn("priority", Array("high", "low")) // 判断该字段是否只存在枚举类型
          .isNonNegative("numViews") // 断言该字段非负数
          .satisfies(
            "abs(column1 - column2) <= 0.20 * column2",
            "value(column1) lies between value(column2)-20% and value(column2)+20%"
          )  // 自定义条件,判断col1-col2绝对值在0.2 * col2间
      )
      .addCheck(
        Check(CheckLevel.Warning, "distribution checks")
          .containsURL("description", _ >= 0.5)  // 断言有一半的值包含url
          .hasApproxQuantile("numViews", 0.5, _ <= 10))  // 断言有一半的值不超过10
      .run()
  }

 

posted @ 2022-03-25 17:22  Shydow  阅读(1030)  评论(0编辑  收藏  举报