java中聚类得到数据的聚类中心
package com.baorant; import java.io.File; import java.util.Random; /* * 聚类得到数据中心 */ public class JuLei { point[] ypo;// 点集 point[] pacore = null;// old聚类中心 point[] pacoren = null;// new聚类中心 // 初试聚类中心,点集 public void productpoint(int[] datas) { int num = datas.length; ypo = new point[num]; for (int i = 0; i < num; i++) { float x = 0; float y = datas[i]; ypo[i] = new point();// 对象创建 ypo[i].setX(x); ypo[i].setY(y); } // 初始化聚类中心位置 System.out.print("请输入初始化聚类中心个数(随机产生):"); int core = 3; this.pacore = new point[core];// 存放聚类中心 this.pacoren = new point[core]; Random rand = new Random(); int temp[] = new int[core]; temp[0] = rand.nextInt(num); pacore[0] = new point(); pacore[0].x = ypo[temp[0]].x; pacore[0].y = ypo[temp[0]].y; pacore[0].flage = 0; // 避免产生重复的中心 for (int i = 1; i < core; i++) { int flage = 0; int thistemp = rand.nextInt(num); for (int j = 0; j < i; j++) { if (temp[j] == thistemp) { flage = 1;// 有重复 break; } } if (flage == 1) { i--; } else { pacore[i] = new point(); pacore[i].x = ypo[thistemp].x; pacore[i].y = ypo[thistemp].y; pacore[i].flage = 0;// 0表示聚类中心 } } System.out.println("初始聚类中心:"); for (int i = 0; i < pacore.length; i++) { System.out.println(pacore[i].x + " " + pacore[i].y); } } // ///找出每个点属于哪个聚类中心 public void searchbelong()// 找出每个点属于哪个聚类中心 { for (int i = 0; i < ypo.length; i++) { double dist = 999; int lable = -1; for (int j = 0; j < pacore.length; j++) { double distance = distpoint(ypo[i], pacore[j]); if (distance < dist) { dist = distance; lable = j; // po[i].flage = j + 1;// 1,2,3...... } } ypo[i].flage = lable + 1; } } // 更新聚类中心 public void calaverage() { for (int i = 0; i < pacore.length; i++) { System.out.println("以<" + pacore[i].x + "," + pacore[i].y + ">为中心的点:"); int numc = 0; point newcore = new point(); for (int j = 0; j < ypo.length; j++) { if (ypo[j].flage == (i + 1)) { System.out.println(ypo[j].x + "," + ypo[j].y); numc += 1; newcore.x += ypo[j].x; newcore.y += ypo[j].y; } } // 新的聚类中心 pacoren[i] = new point(); pacoren[i].x = newcore.x / numc; pacoren[i].y = newcore.y / numc; pacoren[i].flage = 0; System.out.println("新的聚类中心:" + pacoren[i].x + "," + pacoren[i].y); } } public double distpoint(point px, point py) { return Math.sqrt(Math.pow((px.x - py.x), 2) + Math.pow((px.y - py.y), 2)); } public void change_oldtonew(point[] old, point[] news) { for (int i = 0; i < old.length; i++) { old[i].x = news[i].x; old[i].y = news[i].y; old[i].flage = 0;// 表示为聚类中心的标志。 } } public void movecore() { // this.productpoint();//初始化,样本集,聚类中心, this.searchbelong(); this.calaverage();// double movedistance = 0; int biao = -1;// 标志,聚类中心点的移动是否符合最小距离 for (int i = 0; i < pacore.length; i++) { movedistance = distpoint(pacore[i], pacoren[i]); System.out.println("distcore:" + movedistance);// 聚类中心的移动距离 if (movedistance < 0.01) { biao = 0; } else { biao = 1;// 需要继续迭代, break; } } if (biao == 0) { System.out.print("迭代完毕!!!!!"); } else { change_oldtonew(pacore, pacoren); movecore(); } } public static void main(String[] args) { File csv = new File("csv//1203.csv"); // CSV文件路径 int[] records = GetExcelData.returnFinalArray(csv); for(int i = 0; i < records.length; i++){ System.out.print(records[i] + " "); } System.out.println(); System.out.println("打印聚类中心:"); JuLei juLei = new JuLei(); juLei.productpoint(records); juLei.movecore(); System.out.println(); for(int j = 0; j < juLei.pacoren.length; j++){ System.out.println(juLei.pacoren[j].x + " " + juLei.pacoren[j].y); } } } class point { public float x = 0; public float y = 0; public int flage = -1; public float getX() { return x; } public void setX(float x) { this.x = x; } public float getY() { return y; } public void setY(float y) { this.y = y; } }