Embedding flow

Zdun (\cite[Example 1.2, page 69-71]{Zdun1979-Book}) proved that
there exists a map \(h\) with

\[h(b)=a \]

such that the local linear map

\[\begin{equation} f(x)= \begin{cases} sx,~~~ & x\in [0,a),\\ h(x),~~~ & x\in [a,b),\\ 1+M(x-1),~~~ & x\in [b,1], \end{cases} \end{equation} \]

is globally \(C^1\)-embeddable if and only if

\[\begin{equation} a=\frac{\ln M}{\ln \left(\frac{M}{s}\right)}, \end{equation} \]

where the constants \(a,b,s\) and \(M\) satisfy \(0<a<b<1\), \(0<s<1<M\).

\({\large Proof}\):
We recall the fact that \(f\) is linear on \([0,a]\) and \([b,1]\) if and only if so is \(\phi\) on \([0,a]\) and
\([f(b),1]\).
Due to \(f(b)=a\), we have

\[\begin{equation} \phi(x)= \begin{cases} x,~~~ & x\in [0,a),\\ \frac{a}{a-1}(x-1),~~~ & x\in [a,1]. \end{cases} \end{equation} \]

Furthermore, by using the relation

\[\frac{\phi^\prime(1)}{\phi^\prime(0)}=\frac{\ln f^\prime(1)}{\ln f^\prime(0)} \]

\[\Rightarrow \frac{a}{a-1}=\frac{\ln M}{\ln s} \]

\[\Rightarrow \frac{a-1}{a}=\frac{\ln s}{\ln M} \]

\[\Rightarrow \frac{1}{a}=1-\frac{\ln s}{\ln M}=\frac{\ln (M/s)}{\ln M} \]

\[\Rightarrow a=\frac{\ln M}{\ln (M/s)}. \]

posted @ 2024-08-21 18:46  枫叶之影  阅读(3)  评论(0编辑  收藏  举报