sklearn逻辑回归库函数直接拟合数据
from sklearn import model_selection from sklearn.linear_model import LogisticRegression from sklearn import metrics # generalization of test and train set X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.5, random_state=0) # model training log_model = LogisticRegression() log_model.fit(X_train, y_train) # model testing y_pred = log_model.predict(X_test) # summarize the accuracy of fitting print(metrics.confusion_matrix(y_test, y_pred)) print(metrics.classification_report(y_test, y_pred))
第一步,划分元素训练集和测试集,用model_selection。train_test_split指定分类数据集,答案,测试大小。
第二部,使用logisticRegression。fit函数来训练x_train,y-train.
第三步,测试,用logisticregression。predict(x_test)来使用测试集。
第四步,输出。
posted on 2018-05-14 15:27 maxwell_tesla 阅读(378) 评论(0) 编辑 收藏 举报