图像识别相关

1、airtest项目:airtest、poco; 地址: https://github.com/AirtestProject

** pip install -U airtest

** 使用

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
from airtest.core.api import *
 
# connect an android phone with adb
init_device("Android")
# or use connect_device api
# connect_device("Android:///")
 
install("path/to/your/apk")
start_app("package_name_of_your_apk")
touch(Template("image_of_a_button.png"))
swipe(Template("slide_start.png"), Template("slide_end.png"))
assert_exists(Template("success.png"))
keyevent("BACK")
home()
uninstall("package_name_of_your_apk")

  

2、图像识别:形状+颜色:https://blog.csdn.net/zgr957254329/article/details/123891504

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import collections
import math
 
import cv2
import matplotlib.pyplot as plt
import numpy as np
 
 
#颜色字典
def ColorList():
    dict = collections.defaultdict(list)
  
    #黑色
    lower_black = np.array([0, 0, 0])
    upper_black = np.array([180, 255, 46])
    color_list = []
    color_list.append(lower_black)
    color_list.append(upper_black)
    dict['black'] = color_list
  
    #灰色
    lower_gray = np.array([0, 0, 46])
    upper_gray = np.array([180, 43, 220])
    color_list = []
    color_list.append(lower_gray)
    color_list.append(upper_gray)
    dict['gray']=color_list
  
    #白色
    lower_white = np.array([0, 0, 221])
    upper_white = np.array([180, 30, 255])
    color_list = []
    color_list.append(lower_white)
    color_list.append(upper_white)
    dict['white'] = color_list
  
    #粉色
    lower_pink = np.array([156, 43, 46])
    upper_pink = np.array([180, 255, 255])
    color_list = []
    color_list.append(lower_pink)
    color_list.append(upper_pink)
    dict['pink']=color_list
  
    #红色
    lower_red = np.array([0, 43, 46])
    upper_red = np.array([10, 255, 255])
    color_list = []
    color_list.append(lower_red)
    color_list.append(upper_red)
    dict['red'] = color_list
  
    #橙色
    lower_orange = np.array([11, 43, 46])
    upper_orange = np.array([25, 255, 255])
    color_list = []
    color_list.append(lower_orange)
    color_list.append(upper_orange)
    dict['orange'] = color_list
  
    #黄色
    lower_yellow = np.array([26, 43, 46])
    upper_yellow = np.array([34, 255, 255])
    color_list = []
    color_list.append(lower_yellow)
    color_list.append(upper_yellow)
    dict['yellow'] = color_list
  
    #绿色
    lower_green = np.array([35, 43, 46])
    upper_green = np.array([77, 255, 255])
    color_list = []
    color_list.append(lower_green)
    color_list.append(upper_green)
    dict['green'] = color_list
  
    #青色
    lower_cyan = np.array([78, 43, 46])
    upper_cyan = np.array([99, 255, 255])
    color_list = []
    color_list.append(lower_cyan)
    color_list.append(upper_cyan)
    dict['cyan'] = color_list
  
    #蓝色
    lower_blue = np.array([100, 43, 46])
    upper_blue = np.array([124, 255, 255])
    color_list = []
    color_list.append(lower_blue)
    color_list.append(upper_blue)
    dict['blue'] = color_list
  
    # 紫色
    lower_purple = np.array([125, 43, 46])
    upper_purple = np.array([155, 255, 255])
    color_list = []
    color_list.append(lower_purple)
    color_list.append(upper_purple)
    dict['purple'] = color_list
  
    return dict
 
#颜色判断
def findColor(imgcut):
    img_hsv=cv2.cvtColor(imgcut,cv2.COLOR_BGR2HSV)
    color_dict=ColorList()
    #print(color_dict)
    color_most=0
    color_now=None
    for color in color_dict:
        #二值化 和颜色字典比较 在上下限之间的像素变为255,之外的所有像素变为0
        color_cmp=cv2.inRange(img_hsv,color_dict[color][0],color_dict[color][1])
        #膨胀 使颜色分割成块并更突出
        color_boom = cv2.dilate(color_cmp,None,iterations=1)
        #取出每一小块
        contours,hierarchy=cv2.findContours(color_boom.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)
        color_area=0
        for img in contours:
            color_area+=cv2.contourArea(img)
        if(color_area>color_most):
            color_most=color_area
            color_now=color
    return color_now
 
#计算斜率
def k_count(x1,y1,x2,y2):
    if((x2-x1)==0):
        x2+=0.01
    k=(y2-y1)/(x2-x1)
    if (k==0):
        k+=0.01
    return k
 
#计算角度
def angle_count(k1,k2):
    angle=math.atan2((k2-k1),(1+k1*k2))
    angle=angle*180/math.pi
    return abs(angle)
 
#图形处理
def LastButNotLeast(imginit,imgcopy):
    # 灰度化
    img_Gray = cv2.cvtColor(imginit, cv2.COLOR_BGR2GRAY)
    # 高斯平滑
    img_Blur = cv2.GaussianBlur(img_Gray, (3, 3), 1)
    # 边缘检测
    img_Canny = cv2.Canny(img_Blur, 50, 50)
    #得到图片中所有图形的轮廓
    #findContours(image, mode, method[, contours[, hierarchy[, offset]]]) -> contours, hierarchy
    contours,hierarchy=cv2.findContours(img_Canny,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)
    #参数:输入图像,霍夫梯度法,分辨率,最小距离,检测方法的对应的参数*2,半径
    for img in contours:   
        #计算面积 太小就不算了
        area=cv2.contourArea(img)
        if area>80:
            perimeter=cv2.arcLength(img,True)
            #折线化
            side=cv2.approxPolyDP(img,0.01*perimeter,True)
            #print(side)
            #计算有几条线
            sideNum=len(side)
            #print(sideNum)
            #计算边长
            length=[]
            k=[]
            for i in range(0,sideNum):
                if(i+1<sideNum):               
                    l=((side[i][0][0]-side[i+1][0][0])**2+(side[i][0][1]-side[i+1][0][1])**2)**(1/2)
                    ktemp=k_count(side[i][0][0],side[i][0][1],side[i+1][0][0],side[i+1][0][1])
                else:
                    l=((side[i][0][0]-side[0][0][0])**2+(side[i][0][1]-side[0][0][1])**2)**(1/2)
                    ktemp=k_count(side[i][0][0],side[i][0][1],side[0][0][0],side[0][0][1])
                length.append(l)
                k.append(ktemp)
            #print(length)
            #计算角度
            angle=[]
            for i in range(0,sideNum):
                if(i+1<sideNum):
                    ang=angle_count(k[i],k[i+1])
                else:
                    ang=angle_count(k[i],k[0])
                angle.append(ang)
            #print(angle)
            #形状判断
            #三角形
            if sideNum==3:
                tag="triangle"
            #其他四边形
            elif sideNum==4:
                tag="Other quadrilateral"
                flag=0
                #菱形
                err=5
                if(length[1]-err<=length[0]<=length[1]+err):
                    if(length[2]-err<=length[1]<=length[2]+err):
                        if(length[3]-err<=length[2]<=length[3]+err):
                            if(length[0]-err<=length[3]<=length[0]+err):
                                tag="diamond"
                                flag=1
                #矩形
                if(89<angle[0]<91):
                    if(89<angle[1]<91):
                        if(89<angle[2]<91):
                            if(89<angle[3]<91):
                                tag="rectangular"
                                if(flag==1):
                                    tag="square"
            elif sideNum==5:
                tag="pentagon"
            elif sideNum==6:
                tag="hexagon"
            elif sideNum==10:
                tag="five-pointed star"
            elif sideNum>10:
                tag="circle"
            else:
                tag="None"               
            #定个位
            x,y,wide,high=cv2.boundingRect(side)
            #裁剪中心位置
            x0=int(x+(wide/2))
            y0=int(y+(high/2))
            err=25
            imgCut=imginit[(y0-err):(y0+err),(x0-err):(x0+err)]
            color=findColor(imgCut)
            #添加标签
            cv2.rectangle(imgcopy, (x-5, y-5), (x + wide+5, y + high+5), (0, 235, 6), 2)
            cv2.putText(imgcopy, tag,(x, y-28), cv2.FONT_HERSHEY_TRIPLEX, 0.85,(0,0, 255), 1)
            cv2.putText(imgcopy, color,(x, y-5), cv2.FONT_HERSHEY_TRIPLEX, 0.85,(0, 0, 255), 1)
 
if __name__ == "__main__":
    path=input("图片路径:")
    #path=r"D:\test.png"
    img = cv2.imread(path)
    while(np.all(img==None)):
        print("无法读取图片")
        path=input("图片路径:")
        img = cv2.imread(path)
    img_Copy=img.copy()
     
    #图像处理函数
    LastButNotLeast(img,img_Copy)
 
    #输出结果
    plt.subplot(1,2,1)
    img=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
    plt.imshow(img)
    plt.title("The original image")
 
    plt.subplot(1,2,2)
    img_Copy=cv2.cvtColor(img_Copy,cv2.COLOR_BGR2RGB)
    plt.imshow(img_Copy)
    plt.title("The image after processing")
 
    plt.show()

  

posted @   小毛编  阅读(38)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· 单线程的Redis速度为什么快?
点击右上角即可分享
微信分享提示