Python的下划线_

1、单下划线(_)

通常情况下,单下划线(_)会在以下3种场景中使用:

1.1 在解释器中:

在这种情况下,“_”代表交互式解释器会话中上一条执行的语句的结果。这种用法首先被标准CPython解释器采用,然后其他类型的解释器也先后采用。

>>> _ Traceback (most recent call last): 
File "<stdin>", line 1, in <module> 
NameError: name '_' is not defined 
>>> 42
>>> _ 
42
>>> 'alright!' if _ else ':('
'alright!'
>>> _ 
'alright!'

1.2 作为一个名称:

这与上面一点稍微有些联系,此时“_”作为临时性的名称使用。这样,当其他人阅读你的代码时将会知道,你分配了一个特定的名称,但是并不会在后面再次用到该名称。例如,下面的例子中,你可能对循环计数中的实际值并不感兴趣,此时就可以使用“_”。

n = 42
for _ in range(n): 
    do_something()

1. 3 国际化:

也许你也曾看到”_“会被作为一个函数来使用。这种情况下,它通常用于实现国际化和本地化字符串之间翻译查找的函数名称,这似乎源自并遵循相应的C约定。例如,在 Django文档“转换”章节 中,你将能看到如下代码:

from django.utils.translation import ugettext as _ 
from django.http import HttpResponse 
def my_view(request): 
    output = _("Welcome to my site.") 
    return HttpResponse(output)

可以发现,场景二和场景三中的使用方法可能会相互冲突,所以我们需要避免在使用“_”作为国际化查找转换功能的代码块中同时使用“_”作为临时名称。

2、名称前的单下划线(如:_shahriar)

程序员使用名称前的单下划线,用于指定该名称属性为“私有”。这有点类似于惯例,为了使其他人(或你自己)使用这些代码时将会知道以“_”开头的名称只供内部使用。正如Python文档中所述:

以下划线“_”为前缀的名称(如_spam)应该被视为API中非公开的部分(不管是函数、方法还是数据成员)。此时,应该将它们看作是一种实现细节,在修改它们时无需对外部通知。

正如上面所说,这确实类似一种惯例,因为它对解释器来说确实有一定的意义,如果你写了代码“from <模块/包名> import *”,那么以“_”开头的名称都不会被导入, 除非模块或包中的“__all__”列表显式地包含了它们 。了解更多请查看“ Importing * in Python”。

不过值得注意的是,如果使用 import a_module 这样导入模块,仍然可以用 a_module._some_var 这样的形式访问到这样的对象。

另外单下划线开头还有一种一般不会用到的情况在于使用一个 C 编写的扩展库有时会用下划线开头命名,然后使用一个去掉下划线的 Python 模块进行包装。如 struct 这个模块实际上是 C 模块 _struct 的一个 Python 包装。

3、名称前的双下划线(如:__shahriar)

名称(具体为一个方法名)前双下划线(__)的用法并不是一种惯例,对解释器来说它有特定的意义。Python中的这种用法是为了避免与子类定义的名称冲突。Python文档指出,“__spam”这种形式( 至少两个前导下划线,最多一个后续下划线 )的任何标识符将会被“_classname__spam”这种形式原文取代,在这里“classname”是去掉前导下划线的当前类名。例如下面的例子:

>>> class A(object): 
...     def _internal_use(self): 
...         pass
...     def __method_name(self): 
...         pass
... 
>>> dir(A()) 
['_A__method_name', ..., '_internal_use']

正如所预料的,“_internal_use”并未改变,而“__method_name”却被变成了“_ClassName__method_name”:__开头 的 私有变量会在代码生成之前被转换为长格式(变为公有)。转换机制是这样的:在变量前端插入类名,再在前端加入一个下划线字符。这就是所谓的私有变量 名字改编 (Private name mangling) 。

此时,如果你创建A的一个子类B,那么你将不能轻易地覆写A中的方法“__method_name”,

>>> class B(A): 
...     def __method_name(self): 
...         pass
... 
>>> dir(B()) 
['_A__method_name', '_B__method_name', ..., '_internal_use']

然而如果你知道了这个规律,最终你还是可以访问这个“私有”变量的。

私有变量名字改编意在给出一个在类中定义"私有"实例变量和方法的简单途径,避免派生类的实例变量定义产生问题,或者与外界代码中的变量搞混。

要注意的是混淆规则(私有变量名字改编)主要目的在于避免意外错误,被认作为私有的变量仍然有可能被访问或修改(使用_classname__membername),在特定的场合它也是有用的,比如调试的时候。

上述的功能几乎和Java中的final方法和C++类中标准方法(非虚方法)一样。

再讲两点题外话:

一是因为轧压(改编)会使标识符变长,当超过255的时候,Python会切断,要注意因此引起的命名冲突。

二是当类名全部以下划线命名的时候,Python就不再执行轧压(改编)。

无论是单下划线还是双下划线开头的成员,都是希望外部程序开发者不要直接使用这些成员变量和这些成员函数,只是双下划线从语法上能够更直接的避 免错误的使用,但是如果按照 _类名__成员名 则依然可以访问到。单下划线的在动态调试时可能会方便一些,只要项目组的人都遵守下划线开头的成员不直接使用,那使用单下划线或许会更好。

4、名称前后的双下划线(如:__init__)

这种用法表示Python中特殊的方法名。其实,这只是一种惯例,对Python系统来说,这将确保不会与用户自定义的名称冲突。通常,你将会 覆写这些方法,并在里面实现你所需要的功能,以便Python调用它们。例如,当定义一个类时,你经常会覆写“__init__”方法。

双下划线开头双下划线结尾的是一些 Python 的“魔术”对象,如类成员的 __init__、__del__、__add__、__getitem__ 等,以及全局的 __file__、__name__ 等。 Python 官方推荐永远不要将这样的命名方式应用于自己的变量或函数,而是按照文档说明来使用。 虽然你也可以编写自己的特殊方法名,但不要这样做。

>>> class C(object): 
...     def __mine__(self): 
...         pass
... 
>>> dir(C) 
... [..., '__mine__', ...]

其实,很容易摆脱这种类型的命名,而只让Python内部定义的特殊名称遵循这种约定 :)

5、题外话 if __name__ == "__main__":

所有的 Python 模块都是对象并且有几个有用的属性,你可以使用这些属性方便地测试你所书写的模块。

模块是对象, 并且所有的模块都有一个内置属性 __name__。一个模块的 __name__ 的值要看您如何应用模块。如果 import 模块, 那么 __name__的值通常为模块的文件名, 不带路径或者文件扩展名。但是您也可以像一个标准的程序一样直接运行模块, 在这种情况下 __name__的值将是一个特别的缺省值:__main__。

>>> import odbchelper
>>> odbchelper.__name__
'odbchelper'

一旦了解到这一点, 您可以在模块内部为您的模块设计一个测试套件, 在其中加入这个 if 语句。当您直接运行模块, __name__ 的值是 __main__, 所以测试套件执行。当您导入模块, __name__的值就是别的东西了, 所以测试套件被忽略。这样使得在将新的模块集成到一个大程序之前开发和调试容易多了。

在 MacPython 上, 需要一个额外的步聚来使得 if __name__ 技巧有效。 点击窗口右上角的黑色三角, 弹出模块的属性菜单, 确认 Run as __main__ 被选中。

6、总结:

Python 用下划线作为变量前缀和后缀指定特殊变量。

_xxx       不能用'from module import *'导入

__xxx__  系统定义名字

__xxx     类中的私有变量名

核心风格:避免用下划线作为变量名的开头。

因为下划线对解释器有特殊的意义,而且是内建标识符所使用的符号,我们建议程序员避免用下划线作为变量名的开头。一般来讲,变量名_xxx被看作是“私有的”,在模块或类外不可以使用。当变量是私有的时候,用_xxx 来表示变量是很好的习惯。 因为变量名__xxx__对Python 来说有特殊含义,对于普通的变量应当避免这种命名风格。

"单下划线" 开始的成员变量叫做保护变量,意思是只有类对象和子类对象自己能访问到这些变量;

"双下划线" 开始的是私有成员,意思是只有类对象自己能访问,连子类对象也不能访问到这个数据。

以单下划线开头(如_foo)的代表不能直接访问的类属性,需通过类提供的接口进行访问,不能用“from xxx import *”而导入;以双下划线开头的(如__foo)代表类的私有成员;以双下划线开头和结尾的(__foo__)代表python里特殊方法专用的标识,如 __init__() 代表类的构造函数。

附 PEP 规范:

PEP-0008:
In addition, the following special forms using leading or trailing underscores are recognized (these can generally be combined with any case convention):
  - _single_leading_underscore: weak "internal use" indicator. E.g. "from M import *" does not import objects whose name starts with an underscore.
  - single_trailing_underscore_: used by convention to avoid conflicts with Python keyword, e.g.
    Tkinter.Toplevel(master, class_='ClassName')
  - __double_leading_underscore: when naming a class attribute, invokes name mangling (inside class FooBar, __boo becomes _FooBar__boo; see below).
  - __double_leading_and_trailing_underscore__: "magic" objects or attributes that live in user-controlled namespaces. E.g. __init__,
    __import__ or __file__. Never invent such names; only use them as documented.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
##############################################################################################################################################################################

Python 用下划线作为变量前缀和后缀指定特殊变量

_xxx 不能用’from module import *’导入

__xxx__ 系统定义名字

__xxx 类中的私有变量名

核心风格:避免用下划线作为变量名的开始。

 

因为下划线对解释器有特殊的意义,而且是内建标识符所使用的符号,我们建议程序员避免用下划线作为变量名的开始。一般来讲,变量名_xxx被看作是“私有 的”,在模块或类外不可以使用。当变量是私有的时候,用_xxx 来表示变量是很好的习惯。因为变量名__xxx__对Python 来说有特殊含义,对于普通的变量应当避免这种命名风格。

“单下划线” 开始的成员变量叫做保护变量,意思是只有类对象和子类对象自己能访问到这些变量;
“双下划线” 开始的是私有成员,意思是只有类对象自己能访问,连子类对象也不能访问到这个数据。

以单下划线开头(_foo)的代表不能直接访问的类属性,需通过类提供的接口进行访问,不能用“from xxx import *”而导入;以双下划线开头的(__foo)代表类的私有成员;以双下划线开头和结尾的(__foo__)代表python里特殊方法专用的标识,如 __init__()代表类的构造函数。

现在我们来总结下所有的系统定义属性和方法, 先来看下保留属性:

>>> Class1.__doc__ # 类型帮助信息 'Class1 Doc.' >>> Class1.__name__ # 类型名称 'Class1' >>> Class1.__module__ # 类型所在模块 '__main__' >>> Class1.__bases__ # 类型所继承的基类 (<type 'object'>,) >>> Class1.__dict__ # 类型字典,存储所有类型成员信息。 <dictproxy object at 0x00D3AD70> >>> Class1().__class__ # 类型 <class '__main__.Class1'> >>> Class1().__module__ # 实例类型所在模块 '__main__' >>> Class1().__dict__ # 对象字典,存储所有实例成员信息。 {'i': 1234}
接下来是保留方法,可以把保留方法分类:

类的基础方法

序号目的所编写代码Python 实际调用
初始化一个实例 x = MyClass() x.__init__()
字符串的“官方”表现形式 repr(x) x.__repr__()
字符串的“非正式”值 str(x) x.__str__()
字节数组的“非正式”值 bytes(x) x.__bytes__()
格式化字符串的值 format(x,format_spec) x.__format__(format_spec)
  1. 对 __init__() 方法的调用发生在实例被创建 之后 。如果要控制实际创建进程,请使用 __new__()方法
  2. 按照约定, __repr__() 方法所返回的字符串为合法的 Python 表达式。
  3. 在调用 print(x) 的同时也调用了 __str__() 方法。
  4. 由于 bytes 类型的引入而从 Python 3 开始出现

行为方式与迭代器类似的类

序号目的所编写代码Python 实际调用
遍历某个序列 iter(seq) seq.__iter__()
从迭代器中获取下一个值 next(seq) seq.__next__()
按逆序创建一个迭代器 reversed(seq) seq.__reversed__()
  1. 无论何时创建迭代器都将调用 __iter__() 方法。这是用初始值对迭代器进行初始化的绝佳之处。
  2. 无论何时从迭代器中获取下一个值都将调用 __next__() 方法。
  3. __reversed__() 方法并不常用。它以一个现有序列为参数,并将该序列中所有元素从尾到头以逆序排列生成一个新的迭代器。

计算属性

序号目的所编写代码Python 实际调用
获取一个计算属性(无条件的) x.my_property x.__getattribute__('my_property')
获取一个计算属性(后备) x.my_property x.__getattr__('my_property')
设置某属性 x.my_property = value x.__setattr__('my_property',value)
删除某属性 del x.my_property x.__delattr__('my_property')
列出所有属性和方法 dir(x) x.__dir__()
  1. 如果某个类定义了 __getattribute__() 方法,在 每次引用属性或方法名称时 Python 都调用它(特殊方法名称除外,因为那样将会导致讨厌的无限循环)。
  2. 如果某个类定义了 __getattr__() 方法,Python 将只在正常的位置查询属性时才会调用它。如果实例 x 定义了属性color, x.color 将 不会 调用x.__getattr__('color');而只会返回x.color 已定义好的值。
  3. 无论何时给属性赋值,都会调用 __setattr__() 方法。
  4. 无论何时删除一个属性,都将调用 __delattr__() 方法。
  5. 如果定义了 __getattr__() 或 __getattribute__() 方法, __dir__() 方法将非常有用。通常,调用 dir(x) 将只显示正常的属性和方法。如果 __getattr()__方法动态处理color 属性,dir(x) 将不会将 color 列为可用属性。可通过覆盖 __dir__() 方法允许将 color 列为可用属性,对于想使用你的类但却不想深入其内部的人来说,该方法非常有益。

 

序号目的所编写代码Python 实际调用
  序列的长度 len(seq) seq.__len__()
  了解某序列是否包含特定的值 x in seq seq.__contains__(x)

 

序号目的所编写代码Python 实际调用
  通过键来获取值 x[key] x.__getitem__(key)
  通过键来设置值 x[key] = value x.__setitem__(key,value)
  删除一个键值对 del x[key] x.__delitem__(key)
  为缺失键提供默认值 x[nonexistent_key] x.__missing__(nonexistent_key)

 

可比较的类

我将此内容从前一节中拿出来使其单独成节,是因为“比较”操作并不局限于数字。许多数据类型都可以进行比较——字符串、列表,甚至字典。如果要创建自己的类,且对象之间的比较有意义,可以使用下面的特殊方法来实现比较。

 

序号目的所编写代码Python 实际调用
  相等 x == y x.__eq__(y)
  不相等 x != y x.__ne__(y)
  小于 x < y x.__lt__(y)
  小于或等于 x <= y x.__le__(y)
  大于 x > y x.__gt__(y)
  大于或等于 x >= y x.__ge__(y)
  布尔上上下文环境中的真值 if x: x.__bool__()

 

可序列化的类

 

Python 支持 任意对象的序列化和反序列化。(多数 Python 参考资料称该过程为 “pickling” 和 “unpickling”)。该技术对与将状态保存为文件并在稍后恢复它非常有意义。所有的 内置数据类型 均已支持 pickling 。如果创建了自定义类,且希望它能够 pickle,阅读 pickle 协议 了解下列特殊方法何时以及如何被调用。

 

序号目的所编写代码Python 实际调用
  自定义对象的复制 copy.copy(x) x.__copy__()
  自定义对象的深度复制 copy.deepcopy(x) x.__deepcopy__()
  在 pickling 之前获取对象的状态 pickle.dump(x, file) x.__getstate__()
  序列化某对象 pickle.dump(x, file) x.__reduce__()
  序列化某对象(新 pickling 协议) pickle.dump(x, file,protocol_version) x.__reduce_ex__(protocol_version)
* 控制 unpickling 过程中对象的创建方式 x = pickle.load(file) x.__getnewargs__()
* 在 unpickling 之后还原对象的状态 x = pickle.load(file) x.__setstate__()

 

* 要重建序列化对象,Python 需要创建一个和被序列化的对象看起来一样的新对象,然后设置新对象的所有属性。__getnewargs__() 方法控制新对象的创建过程,而 __setstate__() 方法控制属性值的还原方式。

 

可在 with 语块中使用的类

 

with 语块定义了 运行时刻上下文环境;在执行 with 语句时将“进入”该上下文环境,而执行该语块中的最后一条语句将“退出”该上下文环境。

 

序号目的所编写代码Python 实际调用
  在进入 with 语块时进行一些特别操作 with x: x.__enter__()
  在退出 with 语块时进行一些特别操作 with x: x.__exit__()

 

以下是 with file 习惯用法 的运作方式:

# excerpt from io.py: def _checkClosed(self, msg=None):     '''Internal: raise an ValueError if file is closed     '''     if self.closed:         raise ValueError('I/O operation on closed file.'                          if msg is None else msg)  def __enter__(self):     '''Context management protocol.  Returns self.'''     self._checkClosed()                                ①     return self                                        ②  def __exit__(self, *args):     '''Context management protocol.  Calls close()'''     self.close()                                       ③
  1. 该文件对象同时定义了一个 __enter__() 和一个 __exit__() 方法。该 __enter__() 方法检查文件是否处于打开状态;如果没有, _checkClosed() 方法引发一个例外。
  2. __enter__() 方法将始终返回 self —— 这是 with 语块将用于调用属性和方法的对象
  3. 在 with 语块结束后,文件对象将自动关闭。怎么做到的?在 __exit__() 方法中调用了self.close() .

 该 __exit__() 方法将总是被调用,哪怕是在 with 语块中引发了例外。实际上,如果引发了例外,该例外信息将会被传递给 __exit__() 方法。查阅 With 状态上下文环境管理器 了解更多细节。

真正神奇的东西

如果知道自己在干什么,你几乎可以完全控制类是如何比较的、属性如何定义,以及类的子类是何种类型。

 

序号目的所编写代码Python 实际调用
  类构造器 x = MyClass() x.__new__()
* 类析构器 del x x.__del__()
  只定义特定集合的某些属性   x.__slots__()
  自定义散列值 hash(x) x.__hash__()
  获取某个属性的值 x.color type(x).__dict__['color'].__get__(x, type(x))
  设置某个属性的值 x.color = 'PapayaWhip' type(x).__dict__['color'].__set__(x, 'PapayaWhip')
  删除某个属性 del x.color type(x).__dict__['color'].__del__(x)
  控制某个对象是否是该对象的实例 your class isinstance(x, MyClass) MyClass.__instancecheck__(x)
  控制某个类是否是该类的子类 issubclass(C, MyClass) MyClass.__subclasscheck__(C)
  控制某个类是否是该抽象基类的子类 issubclass(C, MyABC) MyABC.__subclasshook__(C)

 

python中以双下划线的是一些系统定义得名称,让python以更优雅得语法实行一些操作,本质上还是一些函数和变量,与其他函数和变量无二。
比如x.__add__(y) 等价于 x+y
有一些很常见,有一些可能比较偏,在这里罗列一下,做个笔记,备忘。
x.__contains__(y) 等价于 y in x, 在list,str, dict,set等容器中有这个函数
__base__, __bases__, __mro__, 关于类继承和函数查找路径的。
class.__subclasses__(), 返回子类列表
x.__call__(...) == x(...)
x.__cmp__(y) == cmp(x,y)
x.__getattribute__('name') == x.name == getattr(x, 'name'),  比__getattr__更早调用
x.__hash__() == hash(x)
x.__sizeof__(), x在内存中的字节数, x为class得话, 就应该是x.__basicsize__
x.__delattr__('name') == del x.name
__dictoffset__ attribute tells you the offset to where you find the pointer to the __dict__ object in any instance object that has one. It is in bytes.
__flags__, 返回一串数字,用来判断该类型能否被序列化(if it's a heap type), __flags__ & 512
S.__format__, 有些类有用
x.__getitem__(y) == x[y], 相应还有__setitem__, 某些不可修改类型如set,str没有__setitem__
x.__getslice__(i, j) == x[i:j], 有个疑问,x='123456789', x[::2],是咋实现得
__subclasscheck__(), check if a class is subclass
__instancecheck__(), check if an object is an instance
__itemsize__, These fields allow calculating the size in bytes of instances of the type. 0是可变长度, 非0则是固定长度
x.__mod__(y) == x%y, x.__rmod__(y) == y%x
x.__module__ , x所属模块
x.__mul__(y) == x*y,  x.__rmul__(y) == y*x

__reduce__, __reduce_ex__ , for pickle

__slots__ 使用之后类变成静态一样,没有了__dict__, 实例也不可新添加属性

__getattr__ 在一般的查找属性查找不到之后会调用此函数

__setattr__ 取代一般的赋值操作,如果有此函数会调用此函数, 如想调用正常赋值途径用 object.__setattr__(self, name, value)

__delattr__ 同__setattr__, 在del obj.name有意义时会调用

转自:https://www.cnblogs.com/skying555/p/6169110.html

posted @ 2017-11-15 17:13  banluxinshou  阅读(2424)  评论(0编辑  收藏  举报