【网络】inux流量控制器TC(Traffic Control)
目录
可以控制发包行为,所以tc也可作为生成测试数据的工具:https://blog.csdn.net/bandaoyu/article/details/115673475
一、实施
原文:https://blog.csdn.net/tycoon1988/article/details/40832325
实施步骤概览
在Linux操作系统中流量控制器(TC)主要是在输出端口处建立一个队列进行流量控制,控制的方式是基于路由,亦即基于目的IP地址或目的子网的网络号的流量控制。
流量控制器TC,其基本的功能模块为队列、分类和过滤器。
Linux内核中支持的队列有,Class Based Queue ,Token Bucket Flow ,CSZ ,First In First Out ,Priority ,TEQL ,SFQ ,ATM ,RED。
这里我们讨论的队列与分类都是基于CBQ(Class Based Queue)的,而过滤器是基于路由(Route)的。
配置和使用流量控制器TC,主要分以下几个方面:分别为建立队列、建立分类、建立过滤器和建立路由,另外还需要对现有的队列、分类、过滤器和路由进行监视。
其基本使用步骤为:
1) 针对网络物理设备(如以太网卡eth0)绑定一个CBQ队列;
2) 在该队列上建立分类;
3) 为每一分类建立一个基于路由的过滤器;
4) 最后与过滤器相配合,建立特定的路由表。
先假设一个简单的环境,如下所示:
流量控制器上的以太网卡(eth0) 的IP地址为192.168.1.66,在其上建立一个CBQ队列。假设包的平均大小为1000字节,包间隔发送单元的大小为8字节,可接收冲突的发送最长包数目为20字节。
假如有三种类型的流量需要控制:
1) 是发往主机1的,其IP地址为192.168.1.24。其流量带宽控制在8Mbit,优先级为2;
2) 是发往主机2的,其IP地址为192.168.1.26。其流量带宽控制在1Mbit,优先级为1;
3) 是发往子网1的,其子网号为192.168.1.0,子网掩码为255.255.255.0。流量带宽控制在1Mbit,优先级为6。
实施步骤
1. 建立队列
一般情况下,针对一个网卡只需建立一个队列。
将一个cbq队列绑定到网络物理设备eth0上,其编号为1:0;网络物理设备eth0的实际带宽为10 Mbit,包的平均大小为1000字节;包间隔发送单元的大小为8字节,最小传输包大小为64字节。
tc qdisc add dev eth0 root handle 1: cbq bandwidth 10Mbit avpkt 1000 cell 8 mpu 64
rate: 是一个类保证得到的带宽值.如果有不只一个类,请保证所有子类总和是小于或等于父类.
prio:用来指示借用带宽时的竞争力,prio越小,优先级越高,竞争力越强.
ceil: ceil是一个类最大能得到的带宽值,缺省的ceil是和速率一样.
2. 建立分类
分类建立在队列之上。一般情况下,针对一个队列需建立一个根分类,然后再在其上建立子分类。对于分类,按其分类的编号顺序起作用,编号小的优先;一旦符合某个分类匹配规则,通过该分类发送数据包,则其后的分类不再起作用。
1) 创建根分类1:1;分配带宽为10Mbit,优先级别为8。
tc class add dev eth0 parent 1:0 classid 1:1 cbq bandwidth 10Mbit rate 10Mbit maxburst 20 allot 1514 prio 8 avpkt 1000 cell 8 weight 1Mbit
该队列的最大可用带宽为10Mbit,实际分配的带宽为10Mbit,可接收冲突的发送最长包数目为20字节;最大传输单元加MAC头的大小为1514字节,优先级别为8,包的平均大小为1000字节,包间隔发送单元的大小为8字节,相应于实际带宽的加权速率为1Mbit。
2)创建分类1:2,其父分类为1:1,分配带宽为8Mbit,优先级别为2。
tc class add dev eth0 parent 1:1 classid 1:2 cbq bandwidth 10Mbit rate 8Mbit maxburst 20 allot 1514 prio 2 avpkt 1000 cell 8 weight 800Kbit split 1:0 bounded
该队列的最大可用带宽为10Mbit,实际分配的带宽为 8Mbit,可接收冲突的发送最长包数目为20字节;最大传输单元加MAC头的大小为1514字节,优先级别为1,包的平均大小为1000字节,包间隔发送单元的大小为8字节,相应于实际带宽的加权速率为800Kbit,分类的分离点为1:0,且不可借用未使用带宽。
3)创建分类1:3,其父分类为1:1,分配带宽为1Mbit,优先级别为1。
tc class add dev eth0 parent 1:1 classid 1:3 cbq bandwidth 10Mbit rate 1Mbit maxburst 20 allot 1514 prio 1 avpkt 1000 cell 8 weight 100Kbit split 1:0
该队列的最大可用带宽为10Mbit,实际分配的带宽为 1Mbit,可接收冲突的发送最长包数目为20字节;最大传输单元加MAC头的大小为1514字节,优先级别为2,包的平均大小为1000字节,包间隔发送单元的大小为8字节,相应于实际带宽的加权速率为100Kbit,分类的分离点为1:0。
4)创建分类1:4,其父分类为1:1,分配带宽为1Mbit,优先级别为6。
tc class add dev eth0 parent 1:1 classid 1:4 cbq bandwidth 10Mbit rate 1Mbit maxburst 20 allot 1514 prio 6 avpkt 1000 cell 8 weight 100Kbit split 1:0
该队列的最大可用带宽为10Mbit,实际分配的带宽为 64Kbit,可接收冲突的发送最长包数目为20字节;最大传输单元加MAC头的大小为1514字节,优先级别为1,包的平均大小为1000字节,包间隔发送单元的大小为8字节,相应于实际带宽的加权速率为100Kbit,分类的分离点为1:0。
3. 建立过滤器
过滤器主要服务于分类。一般只需针对根分类提供一个过滤器,然后为每个子分类提供路由映射。
1) 应用路由分类器到cbq队列的根,父分类编号为1:0;过滤协议为ip,优先级别为100,过滤器为基于路由表。
tc filter add dev eth0 parent 1:0 protocol ip prio 100 route
2) 建立路由映射分类1:2, 1:3, 1:4
tc filter add dev eth0 parent 1:0 protocol ip prio 100 route to 2 flowid 1:2
tc filter add dev eth0 parent 1:0 protocol ip prio 100 route to 3 flowid 1:3
tc filter add dev eth0 parent 1:0 protocol ip prio 100 route to 4 flowid 1:4 //创建分类1:4
4.建立路由
该路由是与前面所建立的路由映射一一对应。
1) 发往主机192.168.1.24的数据包通过分类2转发(分类2的速率8Mbit)
ip route add 192.168.1.24 dev eth0 via 192.168.1.66 realm 2
2) 发往主机192.168.1.30的数据包通过分类3转发(分类3的速率1Mbit)
ip route add 192.168.1.30 dev eth0 via 192.168.1.66 realm 3
3)发往子网192.168.1.0/24的数据包通过分类4转发(分类4的速率1Mbit)
ip route add 192.168.1.0/24 dev eth0 via 192.168.1.66 realm 4
注:一般对于流量控制器所直接连接的网段建议使用IP主机地址流量控制限制,不要使用子网流量控制限制。如一定需要对直连子网使用子网流量控制限制,则在建立该子网的路由映射前,需将原先由系统建立的路由删除,才可完成相应步骤。
5. 监视
主要包括对现有队列、分类、过滤器和路由的状况进行监视。
1)显示队列的状况
简单显示指定设备(这里为eth0)的队列状况
tc qdisc ls dev eth0
qdisc cbq 1: rate 10Mbit (bounded,isolated) prio no-transmit
详细显示指定设备(这里为eth0)的队列状况
tc -s qdisc ls dev eth0
qdisc cbq 1: rate 10Mbit (bounded,isolated) prio no-transmit
Sent 7646731 bytes 13232 pkts (dropped 0, overlimits 0)
borrowed 0 overactions 0 avgidle 31 undertime 0
这里主要显示了通过该队列发送了13232个数据包,数据流量为7646731个字节,丢弃的包数目为0,超过速率限制的包数目为0。
2)显示分类的状况
简单显示指定设备(这里为eth0)的分类状况
tc class ls dev eth0
class cbq 1: root rate 10Mbit (bounded,isolated) prio no-transmit
class cbq 1:1 parent 1: rate 10Mbit prio no-transmit #no-transmit表示优先级为8
class cbq 1:2 parent 1:1 rate 8Mbit prio 2
class cbq 1:3 parent 1:1 rate 1Mbit prio 1
class cbq 1:4 parent 1:1 rate 1Mbit prio 6
详细显示指定设备(这里为eth0)的分类状况
tc -s class ls dev eth0
class cbq 1: root rate 10Mbit (bounded,isolated) prio no-transmit
Sent 17725304 bytes 32088 pkts (dropped 0, overlimits 0)
borrowed 0 overactions 0 avgidle 31 undertime 0
class cbq 1:1 parent 1: rate 10Mbit prio no-transmit
Sent 16627774 bytes 28884 pkts (dropped 0, overlimits 0)
borrowed 16163 overactions 0 avgidle 587 undertime 0
class cbq 1:2 parent 1:1 rate 8Mbit prio 2
Sent 628829 bytes 3130 pkts (dropped 0, overlimits 0)
borrowed 0 overactions 0 avgidle 4137 undertime 0
class cbq 1:3 parent 1:1 rate 1Mbit prio 1
Sent 0 bytes 0 pkts (dropped 0, overlimits 0)
borrowed 0 overactions 0 avgidle 159654 undertime 0
class cbq 1:4 parent 1:1 rate 1Mbit prio 6
Sent 5552879 bytes 8076 pkts (dropped 0, overlimits 0)
borrowed 3797 overactions 0 avgidle 159557 undertime 0
这里主要显示了通过不同分类发送的数据包,数据流量,丢弃的包数目,超过速率限制的包数目等等。其中根分类(class cbq 1:0)的状况应与队列的状况类似。
例如,分类class cbq 1:4发送了8076个数据包,数据流量为5552879个字节,丢弃的包数目为0,超过速率限制的包数目为0。
显示过滤器的状况
tc -s filter ls dev eth0
filter parent 1: protocol ip pref 100 route
filter parent 1: protocol ip pref 100 route fh 0xffff0002 flowid 1:2 to 2
filter parent 1: protocol ip pref 100 route fh 0xffff0003 flowid 1:3 to 3
filter parent 1: protocol ip pref 100 route fh 0xffff0004 flowid 1:4 to 4
这里flowid 1:2代表分类class cbq 1:2,to 2代表通过路由2发送。
显示现有路由的状况
ip route
192.168.1.66 dev eth0 scope link
192.168.1.24 via 192.168.1.66 dev eth0 realm 2
202.102.24.216 dev ppp0 proto kernel scope link src 202.102.76.5
192.168.1.30 via 192.168.1.66 dev eth0 realm 3
192.168.1.0/24 via 192.168.1.66 dev eth0 realm 4
192.168.1.0/24 dev eth0 proto kernel scope link src 192.168.1.66
172.16.1.0/24 via 192.168.1.66 dev eth0 scope link
127.0.0.0/8 dev lo scope link
default via 202.102.24.216 dev ppp0
default via 192.168.1.254 dev eth0
如上所示,结尾包含有realm的显示行是起作用的路由过滤器。
6. 维护
主要包括对队列、分类、过滤器和路由的增添、修改和删除。
增添动作一般依照"队列->;分类->;过滤器->;路由"的顺序进行;修改动作则没有什么要求;删除则依照"路由->;过滤器->;分类->;队列"的顺序进行。
1)队列的维护
一般对于一台流量控制器来说,出厂时针对每个以太网卡均已配置好一个队列了,通常情况下对队列无需进行增添、修改和删除动作了。
2)分类的维护
增添
增添动作通过tc class add命令实现,如前面所示。
修改
修改动作通过tc class change命令实现,如下所示:
·tc class change dev eth0 parent 1:1 classid 1:2 cbq bandwidth 10Mbit rate 7Mbit maxburst 20 allot 1514 prio 2 avpkt 1000 cell 8 weight 700Kbit split 1:0 bounded
对于bounded命令应慎用,一旦添加后就进行修改,只可通过删除后再添加来实现。
删除
删除动作只在该分类没有工作前才可进行,一旦通过该分类发送过数据,则无法删除它了。因此,需要通过shell文件方式来修改,通过重新启动来完成删除动作。
3)过滤器的维护
增添
增添动作通过tc filter add命令实现,如前面所示。
修改
修改动作通过tc filter change命令实现,如下所示:
·tc filter change dev eth0 parent 1:0 protocol ip prio 100 route to 10 flowid 1:8
删除
删除动作通过tc filter del命令实现,如下所示:
·tc filter del dev eth0 parent 1:0 protocol ip prio 100 route to 10
4)与过滤器一一映射路由的维护
增添
增添动作通过ip route add命令实现,如前面所示。
修改
修改动作通过ip route change命令实现,如下所示:
·ip route change 192.168.1.30 dev eth0 via 192.168.1.66 realm 8
删除
删除动作通过ip route del命令实现,如下所示:
·ip route del 192.168.1.30 dev eth0 via 192.168.1.66 realm 8
·ip route del 192.168.1.0/24 dev eth0 via 192.168.1.66 realm 4
原文链接:https://blog.csdn.net/tycoon1988/article/details/40832325
原理
原文: https://www.cnblogs.com/endsock/archive/2011/12/09/2281519.html
一、TC原理介绍
Linux操作系统中的流量控制器TC(Traffic Control)用于Linux内核的流量控制,主要是通过在输出端口处建立一个队列来实现流量控制。(因为我们无法控制自己网络之外的设备,入口处的流量控制相对较难。)
流量控制的一个基本概念是队列(Qdisc),每个网卡都与一个队列(Qdisc)相联系,每当内核需要将报文分组从网卡发送出去,都会首先将该报文分组添加到该网卡所配置的队列中,由该队列决定报文分组的发送顺序。因此可以说,所有的流量控制都发生在队列中,详细流程图见图1。
图1报文在Linux内部流程图
报文分组从输入网卡(入口)接收进来,经过路由的查找,以确定是发给本机的,还是需要转发的。如果是发给本机的,就直接向上递交给上层的协议,比如TCP,如果是转发的,则会从输出网卡(出口)发出。
有些队列的功能是非常简单的,它们对报文分组实行先来先走的策略。有些队列则功能复杂,会将不同的报文分组进行排队、分类,并根据不同的原则,以不同的顺序发送队列中的报文分组。为实现这样的功能,这些复杂的队列需要使用不同的过滤器(Filter)来把报文分组分成不同的类别(Class)。这里把这些复杂的队列称为可分类(Classiful)的队列。通常,要实现功能强大的流量控制,可分类的队列是必不可少的。因此,类别(Class)和过滤器(Filter)也是流量控制的另外两个重要的基本概念。图2所示的是一个可分类队列的例 子。
由图2可以看出,类别(Class)和过滤器(Filter)都是队列的内部结构,并且可分类的队列可以包含多个类别,同时,一个类别又可以进一步包含有子队列,或者子类别。所有进入该类别的报文分组可以依据不同的原则放入不同的子队列 或子类别中,以此类推。而过滤器(Filter)是队列用来对数据报文进行分类的工具,它决定一个数据报文将被分配到哪个类别中。
二、使用TC
在Linux中,流量控制都是通过TC这个工具来完成的。通常,要对网卡进行流量控制的配置,需要进行如下的步骤:
◆ 为网卡配置一个队列;
◆ 在该队列上建立分类;
◆ 根据需要建立子队列和子分类;
◆ 为每个分类建立过滤器。
在Linux中,可以配置很多类型的队列,比如CBQ、HTB等,其中CBQ 比较复杂,不容易理解。HTB(Hierarchical Token Bucket)是一个可分类的队列, 与其他复杂的队列类型相比,HTB具有功能强大、配置简单及容易上手等优点。在TC中,使用"major:minor"这样的句柄来标识队列和类别,其中major和minor都是数字。
对于队列来说,minor总是为0,即"major:0"这样的形式,也可以简写为"major: "比如,队列1:0可以简写为1:。需要注意的是,major在一个网卡的所有队列中必须是惟一的。对于类别来说,其major必须和它的父类别或父队列的major相同,而minor在一个队列内部则必须是惟一的(因为类别肯定是包含在某个队列中的)。举个例子,如果队列2:包含两个类别,则这两个类别的句柄必须是2:x这样的形式,并且它们的x不能相同,比如2:1和2:2。
下面,将以HTB队列为主,结合需求来讲述TC的使用。假设eth0出口有100mbit/s的带宽,分配给WWW、E-mail和Telnet三种数据流量,其中分配给WWW的带宽为40Mbit/s,分配给Email的带宽为40Mbit/s,分配给Telnet的带宽为20Mbit/S。
需要注意的是,在TC 中使用下列的缩写表示相应的带宽:
◆ Kbps : kilobytes per second,千字节每秒 ;
◆ Mbps : megabytes per second,兆字节每秒 ,
◆ Kbit : kilobits per second,千比特每秒 ;
◆ Mbit : megabits per second, 兆比特每秒 。
三、创建HTB队列
有关队列的TC命令的一般形式为:
#tc qdisc [add | change | replace | link] dev DEV [parent qdisk-id |root] [handle qdisc-id] qdisc [qdisc specific parameters]
首先,需要为网卡eth0配置一个HTB队列,使用下列命令:
#tc qdisc add dev eth0 root handle 1:htb default 11
这里,命令中的”add”表示要添加,”dev eth0”表示要操作的网卡为eth0。”root”表示为网卡eth0添加的是一个根队列。”handle 1:”表示队列的句柄为1: 。”htb”表示要添加的队列为HTB队列。命令最后的”default 11”是htb特有的队列参数,意思是所有未分类的流量都将分配给类别1:11。
四、为根队列创建相应的类别
有关类别的TC 命令的一般形式为:
#tc class [add | change | replace] dev DEV parent qdisc-id [classid class-id] qdisc [qdisc specific parameters]
可以利用下面这三个命令为根队列1创建三个类别,分别是1:1 1、1:12和1:13,它们分别占用40、40和20mb[t的带宽。
#tc class add dev eth0 parent 1: classid 1:1 htb rate 40mbit ceil 40mbit
#tc class add dev eth0 parent 1: classid 1:12 htb rate 40mbit ceil 40mbit
#tc class add dev eth0 parent 1: cllassid 1:13 htb rate 20mbit ceil 20mbit
命令中,”parent 1:”表示类别的父亲为根队列1: 。”classid1:11”表示创建一个标识为1:11的类别,”rate 40mbit”表示系统将为该类别确保带宽40mbit,”ceil 40mbit”,表示该类别的最高可占用带宽为40mbit。
五、为各个类别设置过滤器
有关过滤器的TC 命令的一般形式为:
#tc filter [add | change | replace] dev DEV [parent qdisc-id | root] protocol protocol prio priority filtertype [filtertype specific parameters] flowid flow-id
由于需要将WWW、E-mail、Telnet三种流量分配到三个类别,即上述1:11、1:12和1:13,因此,需要创建三个过滤器,如下面的三个命令:
#tc filter add dev eth0 protocol ip parent 1:0 prio 1 u32 match ip dport 80 0xffff flowid 1:11
#tc filter add dev eth0 prtocol ip parent 1:0 prio 1 u32 match ip dport 25 0xffff flowid 1:12
#tc filter add dev eth0 protocol ip parent 1:0 prio 1 u32 match ip dport 23 oxffff flowid 1:13
这里,”protocol ip”表示该过滤器应该检查报文分组的协议字段。”prio 1” 表示它们对报文处理的优先级是相同的,对于不同优先级的过滤器,系统将按照从小到大的优先级顺序来执行过滤器,对于相同的优先级,系统将按照命令的先后顺序执行。这几个过滤器还用到了u32选择器(命令中u32后面的部分)来匹配不同的数据流。以第一个命令为例,判断的是dport字段,如果该字段与Oxffff进行与操作的结果是8O,则”flowid 1:11”表示将把该数据流分配给类别1:11。更加详细的有关TC的用法可以参考TC的手册页。
六、复杂的实例
在上面的例子中, 三种数据流(www、Email、Telnet)之间是互相排斥的。当某个数据流的流量没有达到配额时,其剩余的带宽并不能被其他两个数据流所借用。在这里将涉及如何使不同的数据流可以共享一定的带宽。
首先需要用到HTB的一个特性, 即对于一个类别中的所有子类别,它们将共享该父类别所拥有的带宽,同时,又可以使得各个子类别申请的各自带宽得到保证。这也就是说,当某个数据流的实际使用带宽没有达到其配额时,其剩余的带宽可以借给其他的数据流。而在借出的过程中,如果本数据流的数据量增大,则借出的带宽部分将收回,以保证本数据流的带宽配额。
下面考虑这样的需求,同样是三个数据流WWW、E-mail和Telnet, 其中的Telnet独立分配20Mbit/s的带宽。另一方面,WWW 和SMTP各自分配40Mbit/s的带宽。同时,它们又是共享的关系,即它们可以互相借用带宽。如图3所示。
需要的TC命令如下:
#tc qdisc add dev eth0 root handle 1: htb default 21
#tc class add dev eth0 partent 1: classid 1:1 htb rate 20mbit ceil 20mbit
#tc class add dev eth0 parent 1: classid 1:2 htb rate 80mbit ceil 80mbit
#tc class add dev eth0 parent 1: classid 1:21 htb rate 40mbit ceil 20mbit
#tc class add dev eth0 parent 1:2 classid 1:22 htb rate 40mbit ceil 80mbit
#tc filter add dev eth0 protocol parent 10 prio 1 u32 match ip dport 80 0xffff flowid 1:21
#tc filter add dev eth0 protocol parent 1:0 prio 1 u32 match ip dport 25 0xffff flowid 1:22
#tc filter add dev eth0 protocol parent 1:0 prio 1 u32 match ip dport 23 0xffff flowid 1:1
这里为根队列1创建两个根类别,即1:1和1:2,其中1:1对应Telnet数据流,1:2对应80Mbit的数据流。然后,在1:2中,创建两个子类别1:21和1:22,分别对应WWW和E-mail数据流。由于类别1:21和1:22是类别1:2的子类别,因此他们可以共享分配的80Mbit带宽。同时,又确保当需要时,自己的带宽至少有40Mbit。
从这个例子可以看出,利用HTB中类别和子类别的包含关系,可以构建更加复杂的多层次类别树,从而实现的更加灵活的带宽共享和独占模式,达到企业级的带宽管理目的。
原文链接:https://blog.csdn.net/zhaobryant/article/details/38797655
二、TC规则
1、流量控制方式
流量控制包括以下几种方式:
SHAPING(限制) 当流量被限制,它的传输速率就被控制在某个值以下。限制值可以大大小于有效带宽,这样可以平滑突发数据流量,使网络更为稳定。shaping(限制)只适用于向外的流量。
SCHEDULING(调度) 通过调度数据包的传输,可以在带宽范围内,按照优先级分配带宽。SCHEDULING(调度)也只适于向外的流量。
POLICING(策略) SHAPING用于处理向外的流量,而POLICIING(策略)用于处理接收到的数据。
DROPPING(丢弃) 如果流量超过某个设定的带宽,就丢弃数据包,不管是向内还是向外。
2、流量控制处理对象
流量的处理由三种对象控制,它们是:qdisc(排队规则)、class(类别)和filter(过滤器)。
QDISC(排队规则) QDisc(排队规则)是queueing discipline的简写,它是理解流量控制(traffic control)的基础。无论何时,内核如果需要通过某个网络接口发送数据包,它都需要按照为这个接口配置的qdisc(排队规则)把数据包加入队列。然后,内核会尽可能多地从qdisc里面取出数据包,把它们交给网络适配器驱动模块。最简单的QDisc是pfifo它不对进入的数据包做任何的处理,数据包采用先入先出的方式通过队列。不过,它会保存网络接口一时无法处理的数据包。
QDISC的类别如下:
(1)、CLASSLESS QDisc(不可分类QDisc)
1>无类别QDISC包括:
[p|b]fifo
使用最简单的qdisc,纯粹的先进先出。只有一个参数:limit,用来设置队列的长度,pfifo是以数据包的个数为单位;bfifo是以字节数为单位。
pfifo_fast
在编译内核时,如果打开了高级路由器(Advanced Router)编译选项,pfifo_fast就是系统的标准QDISC。它的队列包括三个波段(band)。在每个波段里面,使用先进先出规则。而三个波段(band)的优先级也不相同,band 0的优先级最高,band 2的最低。如果band里面有数据包,系统就不会处理band 1里面的数据包,band 1和band 2之间也是一样。数据包是按照服务类型(Type of Service,TOS)被分配多三个波段(band)里面的。
red
red是Random Early Detection(随机早期探测)的简写。如果使用这种QDISC,当带宽的占用接近于规定的带宽时,系统会随机地丢弃一些数据包。它非常适合高带宽应用。
sfq
sfq是Stochastic Fairness Queueing的简写。它按照会话(session--对应于每个TCP连接或者UDP流)为流量进行排序,然后循环发送每个会话的数据包。
tbf
tbf是Token Bucket Filter的简写,适合于把流速降低到某个值。
2>不可分类QDisc的配置
如果没有可分类QDisc,不可分类QDisc只能附属于设备的根。它们的用法如下:
tc qdisc add dev DEV root QDISC QDISC-PARAMETERS
要删除一个不可分类QDisc,需要使用如下命令:
tc qdisc del dev DEV root
一个网络接口上如果没有设置QDisc,pfifo_fast就作为缺省的QDisc。
(2)、CLASSFUL QDISC(分类QDisc)
可分类的QDisc包括:
CBQ
CBQ是Class Based Queueing(基于类别排队)的缩写。它实现了一个丰富的连接共享类别结构,既有限制(shaping)带宽的能力,也具有带宽优先级管理的能力。带宽限制是通过计算连接的空闲时间完成的。空闲时间的计算标准是数据包离队事件的频率和下层连接(数据链路层)的带宽。
HTB
HTB是Hierarchy Token Bucket的缩写。通过在实践基础上的改进,它实现了一个丰富的连接共享类别体系。使用HTB可以很容易地保证每个类别的带宽,虽然它也允许特定的类可以突破带宽上限,占用别的类的带宽。HTB可以通过TBF(Token Bucket Filter)实现带宽限制,也能够划分类别的优先级。
PRIO
PRIO QDisc不能限制带宽,因为属于不同类别的数据包是顺序离队的。使用PRIO QDisc可以很容易对流量进行优先级管理,只有属于高优先级类别的数据包全部发送完毕,才会发送属于低优先级类别的数据包。为了方便管理,需要使用iptables或者ipchains处理数据包的服务类型(Type Of Service,ToS)。
CLASS(类) 某些QDisc(排队规则)可以包含一些类别,不同的类别中可以包含更深入的QDisc(排队规则),通过这些细分的QDisc还可以为进入的队列的数据包排队。通过设置各种类别数据包的离队次序,QDisc可以为设置网络数据流量的优先级。
FILTER(过滤器) Filter(过滤器)用于为数据包分类,决定它们按照何种QDisc进入队列。无论何时数据包进入一个划分子类的类别中,都需要进行分类。分类的方法可以有多种,使用fileter(过滤器)就是其中之一。使用filter(过滤器)分类时,内核会调用附属于这个类(class)的所有过滤器,直到返回一个判决。如果没有判决返回,就作进一步的处理,而处理方式和QDISC有关。需要注意的是,filter(过滤器)是在QDisc内部,它们不能作为主体。
3、操作原理
类(Class)组成一个树,每个类都只有一个父类,而一个类可以有多个子类。某些QDisc(例如:CBQ和HTB)允许在运行时动态添加类,而其它的QDisc(例如:PRIO)不允许动态建立类。允许动态添加类的QDisc可以有零个或者多个子类,由它们为数据包排队。此外,每个类都有一个叶子QDisc,默认情况下,这个叶子QDisc使用pfifo的方式排队,我们也可以使用其它类型的QDisc代替这个默认的QDisc。而且,这个叶子叶子QDisc有可以分类,不过每个子类只能有一个叶子QDisc。 当一个数据包进入一个分类QDisc,它会被归入某个子类。我们可以使用以下三种方式为数据包归类,不过不是所有的QDisc都能够使用这三种方式。
tc过滤器(tc filter)
如果过滤器附属于一个类,相关的指令就会对它们进行查询。过滤器能够匹配数据包头所有的域,也可以匹配由ipchains或者iptables做的标记。
服务类型(Type of Service)
某些QDisc有基于服务类型(Type of Service,ToS)的内置的规则为数据包分类。
skb->priority
用户空间的应用程序可以使用SO_PRIORITY选项在skb->priority域设置一个类的ID。
树的每个节点都可以有自己的过滤器,但是高层的过滤器也可以直接用于其子类。
如果数据包没有被成功归类,就会被排到这个类的叶子QDisc的队中。相关细节在各个QDisc的手册页中。
4、命名规则
所有的QDisc、类和过滤器都有ID。ID可以手工设置,也可以有内核自动分配。ID由一个主序列号和一个从序列号组成,两个数字用一个冒号分开。
QDISC
一个QDisc会被分配一个主序列号,叫做句柄(handle),然后把从序列号作为类的命名空间。句柄采用象10:一样的表达方式。习惯上,需要为有子类的QDisc显式地分配一个句柄。
类(CLASS)
在同一个QDisc里面的类分享这个QDisc的主序列号,但是每个类都有自己的从序列号,叫做类识别符(classid)。类识别符只与父QDisc有关,和父类无关。类的命名习惯和QDisc的相同。
过滤器(FILTER)
过滤器的ID有三部分,只有在对过滤器进行散列组织才会用到。详情请参考tc-filters手册页。
5、单位
tc命令的所有参数都可以使用浮点数,可能会涉及到以下计数单位。
1》带宽或者流速单位:
kbps 千字节/秒
mbps 兆字节/秒
kbit KBits/秒
mbit MBits/秒
bps或者一个无单位数字 字节数/秒
2》数据的数量单位:
kb或者k 千字节
mb或者m 兆字节
mbit 兆bit
kbit 千bit
b或者一个无单位数字 字节数
3》时间的计量单位:
s、sec或者secs 秒
ms、msec或者msecs 分钟
us、usec、usecs或者一个无单位数字 微秒
三、TC命令
tc可以使用以下命令对QDisc、类和过滤器进行操作:
add
在一个节点里加入一个QDisc、类或者过滤器。添加时,需要传递一个祖先作为参数,传递参数时既可以使用ID也可以直接传递设备的根。如果要建立一个QDisc或者过滤器,可以使用句柄(handle)来命名;如果要建立一个类,可以使用类识别符(classid)来命名。
remove
删除有某个句柄(handle)指定的QDisc,根QDisc(root)也可以删除。被删除QDisc上的所有子类以及附属于各个类的过滤器都会被自动删除。
change
以替代的方式修改某些条目。除了句柄(handle)和祖先不能修改以外,change命令的语法和add命令相同。换句话说,change命令不能一定节点的位置。
replace
对一个现有节点进行近于原子操作的删除/添加。如果节点不存在,这个命令就会建立节点。
link
只适用于DQisc,替代一个现有的节点。
例:
tc qdisc [ add | change | replace | link ] dev DEV [ parent qdisc-id | root ] [ handle qdisc-id ] qdisc [ qdisc specific parameters ]
tc class [ add | change | replace ] dev DEV parent qdisc-id [ classid class-id ] qdisc [ qdisc specific parameters ]
tc filter [ add | change | replace ] dev DEV [ parent qdisc-id | root ] protocol protocol prio priority filtertype [ filtertype specific parameters ] flowid flow-id
tc [-s | -d ] qdisc show [ dev DEV ]
tc [-s | -d ] class show dev DEV tc filter show dev DEV
四、具体操作
Linux流量控制主要分为建立队列、建立分类和建立过滤器三个方面。
1、基本实现步骤为:
(1) 针对网络物理设备(如以太网卡eth0)绑定一个队列QDisc;
(2) 在该队列上建立分类class;
(3) 为每一分类建立一个基于路由的过滤器filter;
(4) 最后与过滤器相配合,建立特定的路由表。
2、环境模拟实例:
流量控制器上的以太网卡(eth0) 的IP地址为192.168.1.66,在其上建立一个CBQ队列。假设包的平均大小为1000字节,包间隔发送单元的大小为8字节,可接收冲突的发送最长包数目为20字节。
假如有三种类型的流量需要控制:
1) 是发往主机1的,其IP地址为192.168.1.24。其流量带宽控制在8Mbit,优先级为2;
2) 是发往主机2的,其IP地址为192.168.1.30。其流量带宽控制在1Mbit,优先级为1;
3) 是发往子网1的,其子网号为192.168.1.0,子网掩码为255.255.255.0。流量带宽控制在1Mbit,优先级为6。
1. 建立队列
一般情况下,针对一个网卡只需建立一个队列。
将一个cbq队列绑定到网络物理设备eth0上,其编号为1:0;网络物理设备eth0的实际带宽为10 Mbit,包的平均大小为1000字节;包间隔发送单元的大小为8字节,最小传输包大小为64字节。
·tc qdisc add dev eth0 root handle 1: cbq bandwidth 10Mbit avpkt 1000 cell 8 mpu 64
2. 建立分类
分类建立在队列之上。
一般情况下,针对一个队列需建立一个根分类,然后再在其上建立子分类。对于分类,按其分类的编号顺序起作用,编号小的优先;一旦符合某个分类匹配规则,通过该分类发送数据包,则其后的分类不再起作用。
1) 创建根分类1:1;分配带宽为10Mbit,优先级别为8。
·tc class add dev eth0 parent 1:0 classid 1:1 cbq bandwidth 10Mbit rate 10Mbit maxburst 20 allot 1514 prio 8 avpkt 1000 cell 8 weight 1Mbit
该队列的最大可用带宽为10Mbit,实际分配的带宽为10Mbit,可接收冲突的发送最长包数目为20字节;最大传输单元加MAC头的大小为1514字节,优先级别为8,包的平均大小为1000字节,包间隔发送单元的大小为8字节,相应于实际带宽的加权速率为1Mbit。
2)创建分类1:2,其父分类为1:1,分配带宽为8Mbit,优先级别为2。
·tc class add dev eth0 parent 1:1 classid 1:2 cbq bandwidth 10Mbit rate 8Mbit maxburst 20 allot 1514 prio 2 avpkt 1000 cell 8 weight 800Kbit split 1:0 bounded
该队列的最大可用带宽为10Mbit,实际分配的带宽为 8Mbit,可接收冲突的发送最长包数目为20字节;最大传输单元加MAC头的大小为1514字节,优先级别为1,包的平均大小为1000字节,包间隔发送单元的大小为8字节,相应于实际带宽的加权速率为800Kbit,分类的分离点为1:0,且不可借用未使用带宽。
3)创建分类1:3,其父分类为1:1,分配带宽为1Mbit,优先级别为1。
·tc class add dev eth0 parent 1:1 classid 1:3 cbq bandwidth 10Mbit rate 1Mbit maxburst 20 allot 1514 prio 1 avpkt 1000 cell 8 weight 100Kbit split 1:0
该队列的最大可用带宽为10Mbit,实际分配的带宽为 1Mbit,可接收冲突的发送最长包数目为20字节;最大传输单元加MAC头的大小为1514字节,优先级别为2,包的平均大小为1000字节,包间隔发送单元的大小为8字节,相应于实际带宽的加权速率为100Kbit,分类的分离点为1:0。
4)创建分类1:4,其父分类为1:1,分配带宽为1Mbit,优先级别为6。
·tc class add dev eth0 parent 1:1 classid 1:4 cbq bandwidth 10Mbit rate 1Mbit maxburst 20 allot 1514 prio 6 avpkt 1000 cell 8 weight 100Kbit split 1:0
该队列的最大可用带宽为10Mbit,实际分配的带宽为1Mbit,可接收冲突的发送最长包数目为20字节;最大传输单元加MAC头的大小为1514字节,优先级别为6,包的平均大小为1000字节,包间隔发送单元的大小为8字节,相应于实际带宽的加权速率为100Kbit,分类的分离点为1:0。
3. 建立过滤器
过滤器主要服务于分类。
一般只需针对根分类提供一个过滤器,然后为每个子分类提供路由映射。
1) 应用路由分类器到cbq队列的根,父分类编号为1:0;过滤协议为ip,优先级别为100,过滤器为基于路由表。
·tc filter add dev eth0 parent 1:0 protocol ip prio 100 route
2) 建立路由映射分类1:2, 1:3, 1:4
·tc filter add dev eth0 parent 1:0 protocol ip prio 100 route to 2 flowid 1:2
·tc filter add dev eth0 parent 1:0 protocol ip prio 100 route to 3 flowid 1:3
·tc filter add dev eth0 parent 1:0 protocol ip prio 100 route to 4 flowid 1:4
4.建立路由
该路由是与前面所建立的路由映射一一对应。
1) 发往主机192.168.1.24的数据包通过分类2转发(分类2的速率8Mbit)
·ip route add 192.168.1.24 dev eth0 via 192.168.1.66 realm 2
2) 发往主机192.168.1.30的数据包通过分类3转发(分类3的速率1Mbit)
·ip route add 192.168.1.30 dev eth0 via 192.168.1.66 realm 3
3)发往子网192.168.1.0/24的数据包通过分类4转发(分类4的速率1Mbit)
·ip route add 192.168.1.0/24 dev eth0 via 192.168.1.66 realm 4
注:一般对于流量控制器所直接连接的网段建议使用IP主机地址流量控制限制,不要使用子网流量控制限制。如一定需要对直连子网使用子网流量控制限制,则在建立该子网的路由映射前,需将原先由系统建立的路由删除,才可完成相应步骤。
5. 监视
主要包括对现有队列、分类、过滤器和路由的状况进行监视。
1)显示队列的状况
简单显示指定设备(这里为eth0)的队列状况
·tc qdisc ls dev eth0
qdisc cbq 1: rate 10Mbit (bounded,isolated) prio no-transmit
详细显示指定设备(这里为eth0)的队列状况
·tc -s qdisc ls dev eth0
qdisc cbq 1: rate 10Mbit (bounded,isolated) prio no-transmit Sent 7646731 bytes 13232 pkts (dropped 0, overlimits 0) borrowed 0 overactions 0 avgidle 31 undertime 0
这里主要显示了通过该队列发送了13232个数据包,数据流量为7646731个字节,丢弃的包数目为0,超过速率限制的包数目为0。
2)显示分类的状况
简单显示指定设备(这里为eth0)的分类状况
·tc class ls dev eth0
class cbq 1: root rate 10Mbit (bounded,isolated) prio no-transmit class cbq 1:1 parent 1: rate 10Mbit prio no-transmit #no-transmit表示优先级为8 class cbq 1:2 parent 1:1 rate 8Mbit prio 2 class cbq 1:3 parent 1:1 rate 1Mbit prio 1 class cbq 1:4 parent 1:1 rate 1Mbit prio 6
详细显示指定设备(这里为eth0)的分类状况
·tc -s class ls dev eth0
class cbq 1: root rate 10Mbit (bounded,isolated) prio no-transmit Sent 17725304 bytes 32088 pkts (dropped 0, overlimits 0) borrowed 0 overactions 0 avgidle 31 undertime 0 class cbq 1:1 parent 1: rate 10Mbit prio no-transmit Sent 16627774 bytes 28884 pkts (dropped 0, overlimits 0) borrowed 16163 overactions 0 avgidle 587 undertime 0 class cbq 1:2 parent 1:1 rate 8Mbit prio 2 Sent 628829 bytes 3130 pkts (dropped 0, overlimits 0) borrowed 0 overactions 0 avgidle 4137 undertime 0 class cbq 1:3 parent 1:1 rate 1Mbit prio 1 Sent 0 bytes 0 pkts (dropped 0, overlimits 0) borrowed 0 overactions 0 avgidle 159654 undertime 0 class cbq 1:4 parent 1:1 rate 1Mbit prio 6 Sent 5552879 bytes 8076 pkts (dropped 0, overlimits 0) borrowed 3797 overactions 0 avgidle 159557 undertime 0
这里主要显示了通过不同分类发送的数据包,数据流量,丢弃的包数目,超过速率限制的包数目等等。其中根分类(class cbq 1:0)的状况应与队列的状况类似。
例如,分类class cbq 1:4发送了8076个数据包,数据流量为5552879个字节,丢弃的包数目为0,超过速率限制的包数目为0。
显示过滤器的状况
·tc -s filter ls dev eth0
filter parent 1: protocol ip pref 100 route filter parent 1: protocol ip pref 100 route fh 0xffff0002 flowid 1:2 to 2 filter parent 1: protocol ip pref 100 route fh 0xffff0003 flowid 1:3 to 3 filter parent 1: protocol ip pref 100 route fh 0xffff0004 flowid 1:4 to 4
这里flowid 1:2代表分类class cbq 1:2,to 2代表通过路由2发送。
显示现有路由的状况
·ip route
192.168.1.66 dev eth0 scope link 192.168.1.24 via 192.168.1.66 dev eth0 realm 2 202.102.24.216 dev ppp0 proto kernel scope link src 202.102.76.5 192.168.1.30 via 192.168.1.66 dev eth0 realm 3 192.168.1.0/24 via 192.168.1.66 dev eth0 realm 4 192.168.1.0/24 dev eth0 proto kernel scope link src 192.168.1.66 172.16.1.0/24 via 192.168.1.66 dev eth0 scope link 127.0.0.0/8 dev lo scope link default via 202.102.24.216 dev ppp0 default via 192.168.1.254 dev eth0
如上所示,结尾包含有realm的显示行是起作用的路由过滤器。
6. 维护
主要包括对队列、分类、过滤器和路由的增添、修改和删除。
增添动作一般依照"队列->分类->过滤器->路由"的顺序进行;修改动作则没有什么要求;删除则依照"路由->过滤器->分类->队列"的顺序进行。
1)队列的维护
一般对于一台流量控制器来说,出厂时针对每个以太网卡均已配置好一个队列了,通常情况下对队列无需进行增添、修改和删除动作了。
2)分类的维护
增添
增添动作通过tc class add命令实现,如前面所示。
修改
修改动作通过tc class change命令实现,如下所示:
·tc class change dev eth0 parent 1:1 classid 1:2 cbq bandwidth 10Mbit rate 7Mbit maxburst 20 allot 1514 prio 2 avpkt 1000 cell 8 weight 700Kbit split 1:0 bounded
对于bounded命令应慎用,一旦添加后就进行修改,只可通过删除后再添加来实现。
删除
删除动作只在该分类没有工作前才可进行,一旦通过该分类发送过数据,则无法删除它了。因此,需要通过shell文件方式来修改,通过重新启动来完成删除动作。
3)过滤器的维护
增添
增添动作通过tc filter add命令实现,如前面所示。
修改
修改动作通过tc filter change命令实现,如下所示:
·tc filter change dev eth0 parent 1:0 protocol ip prio 100 route to 10 flowid 1:8
删除
删除动作通过tc filter del命令实现,如下所示:
·tc filter del dev eth0 parent 1:0 protocol ip prio 100 route to 10
4)与过滤器一一映射路由的维护
增添
增添动作通过ip route add命令实现,如前面所示。
修改
修改动作通过ip route change命令实现,如下所示:
·ip route change 192.168.1.30 dev eth0 via 192.168.1.66 realm 8
删除
删除动作通过ip route del命令实现,如下所示:
·ip route del 192.168.1.30 dev eth0 via 192.168.1.66 realm 8
·ip route del 192.168.1.0/24 dev eth0 via 192.168.1.66 realm 4
注:部分内容来自互联网,版权归原作者所有。
linux tc (traffic control 看了一些某些网上的文章,整理一下自身角度去理解的看法:
1. tc 就是qos的一些东西(思科R&S IE部分内容对QOS队列说明结合来看就不错了)。
2. tc 是质量保证,但是我们这种普通人基本上就用来限速啦。(你交换机不帮忙限速是不是。。我自己来。。。)。其实限速只是它已部分,但是我们目前用也是限速。。。
3.tc步骤 先建立 队列(qdisc);分类(class);处理(filter)限速。##基本跟H3C的QOS限速类似..
经验之谈
1. 队列qdisc,用户定义的都是在root下面,自定义handle 树干(一个接口只能有1个队列处理方式(cbq,htb等);
2. 类(class),不能删除,只能修改(如果要删除如何办?把树干干掉)
3. 过滤器(filter关联处理动作);
场景1:不通的IP分配到不同的限速类,分别都是可以限速的。
场景2:不通的IP分配到相同的限速类,分别都可以限速。
理解图:
效果:
无限速前:
限速后:
https://blog.51cto.com/u_323248/1829698