【ceph】mkdir|mksnap流程源码分析|锁状态切换实例

目录

一、mkdir Clientd端的处理

发送请求的流程

发送请求的内容

处理请求的流程

后记

二、mkdir  MDS端的处理

MDS对于来自客户端请求的通用处理

Locker::process_request_cap_release

Server::handle_client_mkdir

Server::rdlock_path_xlock_dentry

Locker::acquire_locks

Locker::handle_client_caps

Locker::acquire_locks

Server::prepare_new_inode

CInode::get_or_open_dirfrag

MDCache::predirty_journal_parents

Locker::issue_new_caps

Server::journal_and_reply

Client----------------------op:mkdir-------------->MDS

mkdir就是创建目录,客户端并不直接创建目录,而是将mkdir的请求(op为CEPH_MDS_OP_MKDIR)发给MDS,然后MDS执行mkdir的操作,并返回创建的目录的元数据。客户端无非就是发送请求和处理回复。

例子 mkdir /mnt/ceph-fuse/test

一、mkdir Client端的处理

转自:cephfs:用户态客户端mkdir - https://zhuanlan.zhihu.com/p/85624700

发送请求的流程

发送请求的内容

两类请求:MetaRequestMClientRequest

MetaRequest的大部分内容都是在make_request和send_request中填充,所以各种op填充的内容都差不多,只研究不同的地方。

struct MetaRequest {
private:
  InodeRef _inode, _old_inode, _other_inode;       // _inode为创建目录的父目录的inode指针
                                                   // 这里_inode->ino = 1
  Dentry *_dentry;                                 //associated with path, _dentry->dir是父目录的Dir,_dentry->name = "test"
public:
  ceph_mds_request_head head;                      // head.op = CEPH_MDS_OP_MKDIR  
  filepath path, path2;                            // path.ino = 0x1(父目录的inode号), path.path = "test"
  ......
  int dentry_drop, dentry_unless;                  // dentry_drop = CEPH_CAP_FILE_SHARED = "Fs",在send_request过程中,会释放掉父目录的Inode的caps的"Fs"权限
                                                   // dentry_unless = CEPH_CAP_FILE_EXCL = "Fx"
  vector<MClientRequest::Release> cap_releases;    // cap_releases.push_back(MClientRequest::Release(rel,""))。?
  ......  
  ceph::cref_t<MClientReply> reply;                // the reply
  //possible responses
  bool got_unsafe;                                 // 收到unsafe的回复时,got_unsafe为true
 
  xlist<MetaRequest*>::item item;                  // 插入到session的requests链表中   
  xlist<MetaRequest*>::item unsafe_item;           // 收到unsafe回复后,插入到session的unsafe_requests链表中。
  xlist<MetaRequest*>::item unsafe_dir_item;       // 收到unsafe回复且涉及到父目录操作(在父目录下创建/删除文件/目录),插入到父目录Inode的unsafe_ops链表中
  xlist<MetaRequest*>::item unsafe_target_item;    // 收到unsafe回复且请求需要获取目的inode信息,插入到自己Inode的unsafe_ops链表中
                                                   // 上述4个链表节点,都在收到safe回复后,会将链表节点从各自的链表中删除
  InodeRef target;                                 // target是创建的目录的Inode指针,从mds的回复中组装而成。
}

MClientRequest的内容是在通用函数build_client_request和send_request函数中填充的,所以大部分内容都差不多

class MClientRequest : public Message {
public:
  mutable struct ceph_mds_request_head head;     // head.op = CEPH_MDS_OP_MKDIR
                                                 // head.flags = CEPH_MDS_FLAG_WANT_DENTRY                                                              
  // path arguments
  filepath path, path2;                          // path.ino = 0x1(父目录的inode号), path.path = "test"
  ......
}

从代码可以看出,发送给mds的请求最重要的就是两个:

  1. op,不同的op,处理机制不同;
  2. filepath pathpath.ino是父目录的inode号,path.path就是需要创建的目录名。

通过这两个,mds就知道在哪个目录下创建目录。

处理请求的流程

class MClientReply : public Message {
public:
  // reply data
  struct ceph_mds_reply_head head {};
      /* client reply */
    struct ceph_mds_reply_head {
	    __le32 op;
	    __le32 result;
	    __le32 mdsmap_epoch;
	    __u8 safe;                     /* true if committed to disk; 用来判断是否已经下刷了disk,或者不需要下刷时,safe就为1*/
	    __u8 is_dentry, is_target;     /* true if dentry, target inode records are included with reply; is_dentry = 1, is_target = 1*/
    } 
  bufferlist trace_bl;                // trace_bl里面存着真正的信息,用于更新目的inode
}

最后"test"目录inode的cap.issued == "pAsxLsXsxFsx", cap.implemented == "pAsxLsXsxFsx"

后记

在linux中同一目录下的子目录和文件名是不能相同的,如test/目录下就不能有"test1"的目录和"text1"的文件。这是为啥,在看过lookup之后,就知道答案了,举例说明:比如我们要mkdir /test/test1: 先进行索引,即lookup 0x1/test,获得test的inode,这里假设test的inode号为0x2, 接下来再lookup 0x2/test1, 即获取test目录下"test1"的Dentry,然后从Dentry中获得Inode,假设在mkdir /test/test1之前,已经有了一个test1的文件,那么这时lookup 0x2/test1会获得test1文件的Inode,lookup返回的结果是0,这是mkdir就报错:文件或目录已存在。

二、mkdir  MDS端的处理

现在就研究下MDS这边处理mkdir的流程。例子:mkdir /test/a

MDS对于来自客户端请求的通用处理

通用处理流程

在上面的图中可以看出,在正式处理mkdir请求之前,先处理了请求中附带的cap_realse消息,即函数Locker::process_request_cap_release;

Locker::process_request_cap_release

process_request_cap_release用来处理请求中ceph_mds_request_release& item,item中的caps就是客户端持有父目录的caps(caps知识:http://t.csdn.cn/KKQzA),比如mkdir /test/a,caps就是客户端持有a的父目录"test"目录的caps。客户端在发送mkdir请求时,会丢掉自己持有的"Fs"权限:客户端"test"的inode中caps为"pAsLsXsFs"。 丢掉"Fs",就是"pAsLsXs"。

process_request_cap_release的代码简略如下。

void Locker::process_request_cap_release(MDRequestRef& mdr, client_t client,
 const ceph_mds_request_release& item, std::string_view dname)
{ // item就是从客户端那边传过来的,dname = ""(客户端传的时候,并没有给dname赋值)
  inodeno_t ino = (uint64_t)item.ino;             // ino = "test"的inode号
  uint64_t cap_id = item.cap_id;
  int caps = item.caps;                           // caps = "pAsLsXs"
  int wanted = item.wanted;                       // wanted = 0
  int seq = item.seq;
  int issue_seq = item.issue_seq;
  int mseq = item.mseq;
  CInode *in = mdcache->get_inode(ino);              // 获取"test"的CInode
  Capability *cap = in->get_client_cap(client);      
  cap->confirm_receipt(seq, caps);                   // 将"test"的CInode的caps的_issued和_pending变成“pAsLsXs”
  adjust_cap_wanted(cap, wanted, issue_seq);         // 设置caps中的wanted
  eval(in, CEPH_CAP_LOCKS);                          
  ......
}

void Locker::process_request_cap_release(MDRequestRef& mdr, client_t client,
 const ceph_mds_request_release& item, std::string_view dname)
{ // item就是从客户端那边传过来的,dname = ""(客户端传的时候,并没有给dname赋值)
  inodeno_t ino = (uint64_t)item.ino;             // ino = "test"的inode号
  uint64_t cap_id = item.cap_id;
  int caps = item.caps;                           // caps = "pAsLsXs"
  int wanted = item.wanted;                       // wanted = 0
  int seq = item.seq;
  int issue_seq = item.issue_seq;
  int mseq = item.mseq;
  CInode *in = mdcache->get_inode(ino);              // 获取"test"的CInode
  Capability *cap = in->get_client_cap(client);      
  cap->confirm_receipt(seq, caps);                   // 将"test"的CInode的caps的_issued和_pending变成“pAsLsXs”
  adjust_cap_wanted(cap, wanted, issue_seq);         // 设置caps中的wanted
  eval(in, CEPH_CAP_LOCKS);                          
  ......
}

简单来讲就是将MDS缓存的"test"的CInode中的对应的客户端的caps与客户端保持一致 (客户端丢掉Fs,MDS缓存的"test"的CInode中的对应的客户端的caps也丢掉),即cap中的_issued和_pending变成"pAsLsXs"。这样做的目的就是在acquire_lock时避免向该客户端发送revoke消息。

Server::handle_client_mkdir

cap_release消息处理完后,通过Server::dispatch_client_request分发请求,根据op执行Server::handle_client_mkdir,处理过程可以分为7个重要的流程:

步骤说明和代码(本段末尾)如下:

1,获取"a"目录的CDentry以及需要上锁的元数据的 lock(锁头,放入rdlocks, wrlocks, xlocks),具体函数为Server::rdlock_path_xlock_dentry

2,上锁,具体函数为Locker::acquire_locks,如果加 上锁不成功,即某些客户端持有的caps需要回收(其他客户端占着本次请求的某些caps?),就新建C_MDS_RetryRequest,加入"test"的CInode的waiting队列中,等待满足加锁条件后,再把请求拿出来处理。

3,如果上锁成功,则继续,新建"a"的CInode,具体函数为Server::prepare_new_inode

4,新建"a"的CDir,具体函数为CInode::get_or_open_dirfrag

5,更新"a"目录到"/"根目录的CDir和CInode中的元数据,填充"mkdir"事件,具体函数为MDCache::predirty_journal_parents

6,新建"a"的Capability,具体函数为Locker::issue_new_caps

7,记录"mkdir"事件,进行第一次回复,提交日志,具体函数为Server::journal_and_reply。

void Server::handle_client_mkdir(MDRequestRef& mdr)
{
  MClientRequest *req = mdr->client_request;
  set<SimpleLock*> rdlocks, wrlocks, xlocks;
  // 获取"a"目录的CDentry以及需要加锁的元数据lock,填充rdlocks,wrlocks,xlocks,dn是"a"的CDentry
  CDentry *dn = rdlock_path_xlock_dentry(mdr, 0, rdlocks, wrlocks, xlocks, false, false, false);
  ......
  CDir *dir = dn->get_dir();          // dir是"test"的CDir
  CInode *diri = dir->get_inode();    // diri是"test"的CInode
  rdlocks.insert(&diri->authlock);    // 将"test"的CInode的authlock加入rdlocks
  // 去获取锁,由于有锁未获取到,所以直接返回
  if (!mds->locker->acquire_locks(mdr, rdlocks, wrlocks, xlocks))
    return;
  ......
 }

Server::rdlock_path_xlock_dentry

该函数具体做的事如下

1,获取"a"的CDentry

2,rdlocks、wrlocks、xlocks 收集操作需要上锁的各种锁

rdlocks:"a"的CDentry中的lock

"/"、"test"的CInode的snaplocks(从根到父目录)

wrlocks:"test"的CInode的filelock和nestlock

xlocks:"a"的CDentry中的lock(simplelock)

代码如下

CDentry* Server::rdlock_path_xlock_dentry(MDRequestRef& mdr, int n, set<SimpleLock*>& rdlocks, set<SimpleLock*>& wrlocks, set<SimpleLock*>& xlocks,
					  bool okexist, bool mustexist, bool alwaysxlock, file_layout_t **layout)
{ // n = 0, rdlocks, wrlocks, xlocks都为空,okexist = mustexist = alwaysxlock = false,layout = 0
  const filepath& refpath = n ? mdr->get_filepath2() : mdr->get_filepath();   // refpath = path: path.ino = 0x10000000001, path.path = "a"
  client_t client = mdr->get_client();
  CDir *dir = traverse_to_auth_dir(mdr, mdr->dn[n], refpath);                // 获取"test"的CDir
  CInode *diri = dir->get_inode();                                           // 获取"test"的CInode
  std::string_view dname = refpath.last_dentry();                            // dname = "a"
  CDentry *dn;
  if (mustexist) { ......                         // mustexist = false    
  } else {
    dn = prepare_null_dentry(mdr, dir, dname, okexist);           // 获取“a”的CDentry
    if (!dn) 
      return 0;
  }
  mdr->dn[n].push_back(dn);                                     // n = 0, 即mdr->dn[0][0] = dn;
  CDentry::linkage_t *dnl = dn->get_linkage(client, mdr);       // dnl中的remote_ino = 0 && inode = 0
  mdr->in[n] = dnl->get_inode();                                // mdr->in[0] = 0
  // -- lock --
  for (int i=0; i<(int)mdr->dn[n].size(); i++)                 // (int)mdr->dn[n].size() = 1
    rdlocks.insert(&mdr->dn[n][i]->lock);                      // 将"a"的CDentry中的lock放入rdlocks
  if (alwaysxlock || dnl->is_null())                           // dnl->is_null()为真
    xlocks.insert(&dn->lock);                                  // new dn, xlock,将"a"的CDentry中的lock放入xlocks
  else ......
  // 下面是将"test"的CDir中的CInode的filelock和nestlock都放入wrlocks
  wrlocks.insert(&dn->get_dir()->inode->filelock); // also, wrlock on dir mtime 
  wrlocks.insert(&dn->get_dir()->inode->nestlock); // also, wrlock on dir mtime 
  if (layout) ......
  else
    mds->locker->include_snap_rdlocks(rdlocks, dn->get_dir()->inode);   // 将路径上的CInode的snaplock全放入rdlocks中,即从"test"到“/”
  return dn;
}

在prepare_null_dentry函数中会新生成"a"的CDentry,代码如下

 CDentry* Server::prepare_null_dentry(MDRequestRef& mdr, CDir *dir, std::string_view dname, bool okexist)
{  // dir是"test"的CDir,dname = "a"
  // does it already exist?
  CDentry *dn = dir->lookup(dname);
  if (dn) {......}                       // dn没有lookup到,所以为NULL
  // create
  dn = dir->add_null_dentry(dname, mdcache->get_global_snaprealm()->get_newest_seq() + 1);   // 新建CDentry
  dn->mark_new();                                 // 设置 state | 1
  return dn;
}

即Server::prepare_null_dentry会先去父目录"test"的CDir的items中去找有没有"a"的CDentry,如果没有找到就新生成一个CDentry。研究MDS,不去研究元数据细节,很容易迷失。下面就是CDentry的类定义,其中可以看到CDentry是继承自LRUObject,因为CDentry是元数据缓存,得靠简单的LRU算法来平衡缓存空间。先研究其中的成员变量的含义

class CDentry : public MDSCacheObject, public LRUObject, public Counter<CDentry> {
......
// 成员变量如下
public:
  __u32 hash;                     // hash就是"a"通过ceph_str_hash_rjenkins函数算出来的hash值
  snapid_t first, last;           
  elist<CDentry*>::item item_dirty, item_dir_dirty; 
  elist<CDentry*>::item item_stray;
  // lock
  static LockType lock_type;   // LockType CDentry::lock_type(CEPH_LOCK_DN)
  static LockType versionlock_type;  // LockType CDentry::versionlock_type(CEPH_LOCK_DVERSION)
  SimpleLock lock;      // 初始化下lock.type->type = CEPH_LOCK_DN,lock.state = LOCK_SYNC
  LocalLock versionlock;  // 初始化下lock.type->type = CEPH_LOCK_DVERSION,lock.state = LOCK_LOCK
  mempool::mds_co::map<client_t,ClientLease*> client_lease_map;
protected:
  CDir *dir = nullptr;  // dir是父目录的CDir,即"test"的CDir
  linkage_t linkage;    // 里面保存了CInode,在mkdir时,由于CInode还没有创建,所以linkage_t里面的内容为空
  mempool::mds_co::list<linkage_t> projected;  // 修改CDentry中的linkage时,并不直接去修改linkage
                                               // 而是先新建一个临时的linkage_t用来保存修改的值,并存放在peojected中
                                               // 待日志下刷后,再将临时值赋给linkage,并删掉临时值
                                               // 所以projected中存放linkage_t的修改值。                         
  version_t version = 0;          
  version_t projected_version = 0;              // what it will be when i unlock/commit.
private:
  mempool::mds_co::string name;  // 文件或目录名, name = "a"

public:
    struct linkage_t {                      // linkage_t中主要存了CInode的指针
        CInode *inode = nullptr;     
        inodeno_t remote_ino = 0;
        unsigned char remote_d_type = 0;
        ......
  };
}    

接下来就是填充rdlocks,wrlocks,xlocks,然后根据填充的锁set数组,去拿锁,只有拿到需要的锁,才能去修改元数据。

Locker::acquire_locks

进行acquire_lock之前需要知道有哪些lock要去获取,如下

对"a"的CDentry的lock进行rdlock和xlock(这里有一个疑点,对lock上xlock后,其实就不需要再加rdlock,事实上接下来也只加了xlock),是因为在接下来会对"a"的CDentry里面的内容读写;

对"a"的父目录"test"的filelock和nestlock上wrlock,是因为接下来要对"test"的CInode的inode里面的dirstat和neststat进行修改;

对"test"的authlock加rdlock,是因为要读取"test"的权限相关的内容(mode、uid、gid等);

剩下的就是snaplock,这个与快照有关,这里暂不讨论快照。

这里解释下,为什么要加这些锁

1,对"test"的CInode的authlock加读锁,因为在Server::prepare_new_inode过程中会获取"test"的CInode的mode内容,如下

if (diri->inode.mode & S_ISGID) {
    dout(10) << " dir is sticky" << dendl;
    in->inode.gid = diri->inode.gid;
    if (S_ISDIR(mode)) {
      dout(10) << " new dir also sticky" << dendl;      
      in->inode.mode |= S_ISGID;
    }

2,对"test"的CInode的filelock和nestlock加wrlock,是因为之后在MDCache::predirty_journal_parents过程中会修改"test"的CInode中inode_t的dirstat和rstat:dirstat受filelock保护,rstat受nestlock保护。

3,对"a"的CDentry加xlock,是因为之后要去给CDentry中的linkage_t填充内容(CInode指针之类)

4,在之后也会去对CInode的versionlock加wrlock,是因为要去修改CInode中inode_t的version;对"/"的CInode的nestlock也加wrlock。

Locker::acquire_locks函数代码有好几百行,我把它分了3个步骤。

第一个步骤是整理xlocks、wrlock和rdlocks,因为这三个锁容器里面,可能有重复的lock,所以要把所有的lock放入一个整体的set中(sorted)。

先遍历xlocks,将"a"的CDentry中的lock放入sorted中,将"a"的CDentry放入mustpin中,并且将"a"的CDentry的versionlock放入wrlocks中;

接下来遍历wrlocks,将"a"的CDentry的versionlock和"test"的CInode的filelock和nestlock放入sorted中,并且将"test"的CInode放入mustpin中;

遍历rdlocks,将"a"CDentry的lock,"test"CInode的authlock、snaplock,和"/"的CInode的snaplock放入sorted中,并将"/"的CInode加入mustpin中。

代码如下

bool Locker::acquire_locks(MDRequestRef& mdr, set<SimpleLock*> &rdlocks, set<SimpleLock*> &wrlocks, set<SimpleLock*> &xlocks,
			   map<SimpleLock*,mds_rank_t> *remote_wrlocks, CInode *auth_pin_freeze, bool auth_pin_nonblock)
{ // remote_wrlocks = NULL, auth_pin_freeze = NULL, auth_pin_nonblock = false
  client_t client = mdr->get_client();
  set<SimpleLock*, SimpleLock::ptr_lt> sorted;  // sort everything we will lock
  set<MDSCacheObject*> mustpin;            // items to authpin
  // xlocks,遍历xlocks,此时xlocks只有一个,就是“a”的CDentry的lock
  for (set<SimpleLock*>::iterator p = xlocks.begin(); p != xlocks.end(); ++p) {
    sorted.insert(lock);                       // 将"a"的CDentry中的lock放入sorted中
    mustpin.insert(lock->get_parent());        // 将CDentry放入mustpin中
    // augment xlock with a versionlock?
    if ((*p)->get_type() == CEPH_LOCK_DN) {
      CDentry *dn = (CDentry*)lock->get_parent();     // dn就是"a"的CDentry
      if (mdr->is_master()) {
	     // master.  wrlock versionlock so we can pipeline dentry updates to journal.
	     wrlocks.insert(&dn->versionlock);            // 将"a"的CDentry中的versionlock放入wrlocks中
      } else { ...... }
    } ......
  }
  
  // wrlocks,遍历wrlocks,此时wrlocks里面有三个: "a"的CDentry的versionlock,
  //  “test”的CInode的filelock和nestlock
  for (set<SimpleLock*>::iterator p = wrlocks.begin(); p != wrlocks.end(); ++p) {
    MDSCacheObject *object = (*p)->get_parent();
    sorted.insert(*p);           // 将三个lock加入sorted中
    if (object->is_auth())
      mustpin.insert(object);    // 将"test"的CInode加入mustpin中
    else if ......
  }
 
  // rdlocks,rdlocks里面有4个lock:"a"CDentry的lock,
  // "test"CInode的authlock、snaplock,"/"的CInode的snaplock
  for (set<SimpleLock*>::iterator p = rdlocks.begin();p != rdlocks.end();++p) {
    MDSCacheObject *object = (*p)->get_parent();
    sorted.insert(*p);               // 将4个lock加入sorted中
    if (object->is_auth())
      mustpin.insert(object);         // 将"/"的CInode加入mustpin中  
    else if ......
  }
......    
}

综上述得:所以sorted中有7个lock:"a"的CDentry的lock和versionlock,"test"的CInode的filelock、nestlock、authlock、snaplock, 还有“/”目录的snaplock。

第二个步骤是auth_pin住元数据,通过第一步,可以知道要auth_pin的MDSCacheObject:"a"的CDentry,"test"的CInode,"/"的CInode。先遍历这三个,去看看是否可以auth_pin,即判断两个部分:auth、pin。如果当前MDS持有的MDSCacheObject不是auth结点,则需要发给auth的MDS去auth_pin,如果当前的MDSCacheObject处于被冻结,或冻结中,则不能auth_pin,加入等待队列,等待可以auth_pin;然后直接返回false。如果可以auth_pin,下面才去auth_pin,将MDSCacheObject中的auth_pins++,代码如下

bool Locker::acquire_locks(MDRequestRef& mdr, set<SimpleLock*> &rdlocks, set<SimpleLock*> &wrlocks, set<SimpleLock*> &xlocks,
			   map<SimpleLock*,mds_rank_t> *remote_wrlocks, CInode *auth_pin_freeze, bool auth_pin_nonblock)
{
 ......
// AUTH PINS
  map<mds_rank_t, set<MDSCacheObject*> > mustpin_remote;  // mds -> (object set)
  // can i auth pin them all now?,看是否可以authpin
  // 遍历mustpin,mustpin中含有三个元素:"a"的CDentry,"test"的CInode,"/"的CInode
  marker.message = "failed to authpin local pins";
  for (set<MDSCacheObject*>::iterator p = mustpin.begin();p != mustpin.end(); ++p) {
    MDSCacheObject *object = *p;
    if (mdr->is_auth_pinned(object)) {...... }// 即看mdr的auth_pins中是否有该MDSCacheObject,如果有,就表示已经auth_pin了
    if (!object->is_auth()) { ...... }      // 如果不是auth节点,将该CDentry/CInode加入mustpin_remote队列,在下面去auth_pin时,发MMDSSlaveRequest消息给auth的mds去处理
                                            // 并将该CDentry/CInode加入waiting_on_slave后,直接返回
    int err = 0;
    if (!object->can_auth_pin(&err)) {  // CDentry是否可以auth_pin,即看父目录("test")的CDir是否可以can_auth_pin
                                        // "test"的CDir是否是auth,且是否被冻结frozen或者正在被冻结frozing
                                        // 如果不能auth_pin,则add_waiter,并返回,等待下次唤醒重试。
      //CInode是否可以auth_pin,得看CInode是否是auth,或者inode是否被冻结,或者正在被冻结,或者auth_pin被冻结;
      // 看CInode的CDentry是否可以can_auth_pin
      if (err == MDSCacheObject::ERR_EXPORTING_TREE) {
	marker.message = "failed to authpin, subtree is being exported";
      } else if (err == MDSCacheObject::ERR_FRAGMENTING_DIR) {
	marker.message = "failed to authpin, dir is being fragmented";
      } else if (err == MDSCacheObject::ERR_EXPORTING_INODE) {
	marker.message = "failed to authpin, inode is being exported";
      }
      object->add_waiter(MDSCacheObject::WAIT_UNFREEZE, new C_MDS_RetryRequest(mdcache, mdr));
      ......
      return false;
    }
  }
    
  // ok, grab local auth pins
  for (set<MDSCacheObject*>::iterator p = mustpin.begin(); p != mustpin.end(); ++p) {
    MDSCacheObject *object = *p;
    if (mdr->is_auth_pinned(object)) { ...... }
    else if (object->is_auth()) {
      mdr->auth_pin(object);                  // 开始auth_pin,即将object中的auth_pins++
      }                                       
 ......
 }

第三个步骤,正式开始加锁,经过一系列操作,要加锁的lock变化了,如下

wrlocks中多了"a"的CDentry的versionlock。

sorted中有7个lock:"a"的CDentry的versionlock和lock, “/”目录的snaplock,"test"的CInode的snaplock、filelock、authlock、nestlock。

bool Locker::acquire_locks(MDRequestRef& mdr, set<SimpleLock*> &rdlocks, set<SimpleLock*> &wrlocks, set<SimpleLock*> &xlocks,
			   map<SimpleLock*,mds_rank_t> *remote_wrlocks, CInode *auth_pin_freeze, bool auth_pin_nonblock)
{
 ...... 
// caps i'll need to issue
  set<CInode*> issue_set;
  bool result = false;
  // acquire locks.
  // make sure they match currently acquired locks.
  set<SimpleLock*, SimpleLock::ptr_lt>::iterator existing = mdr->locks.begin();
  for (set<SimpleLock*, SimpleLock::ptr_lt>::iterator p = sorted.begin(); p != sorted.end(); ++p) {
    bool need_wrlock = !!wrlocks.count(*p); // 先是"a"的CDentry的versionlock
    bool need_remote_wrlock = !!(remote_wrlocks && remote_wrlocks->count(*p));
    // lock
    if (xlocks.count(*p)) {
      marker.message = "failed to xlock, waiting";
      // xlock_start "a"的CDentry的lock,lock状态由LOCK_SYNC --> LOCK_SYNC_LOCK --> LOCK_LOCK (simple_lock) --> LOCK_LOCK_XLOCK --> LOCK_PEXLOCK(simple_xlock) 
      //                                                          --> LOCK_XLOCK (xlock_start)
      if (!xlock_start(*p, mdr))                                  //  先进行xlock
	    goto out;
      dout(10) << " got xlock on " << **p << " " << *(*p)->get_parent() << dendl;
    } else if (need_wrlock || need_remote_wrlock) {
      if (need_wrlock && !mdr->wrlocks.count(*p)) {
        marker.message = "failed to wrlock, waiting";
	    // nowait if we have already gotten remote wrlock
	    if (!wrlock_start(*p, mdr, need_remote_wrlock))           // 进行wrlock
	      goto out;
	    dout(10) << " got wrlock on " << **p << " " << *(*p)->get_parent() << dendl;
      }
    } else {
      marker.message = "failed to rdlock, waiting";
      if (!rdlock_start(*p, mdr))                                 // 进行rdlock
	     goto out;
      dout(10) << " got rdlock on " << **p << " " << *(*p)->get_parent() << dendl;
    }
  }
  ......
 out:
  issue_caps_set(issue_set);
  return result;
}

开始遍历sorted。

  • 对"a"的CDentry的versionlock加wrlock,看是否可以wrlock,即是否已经xlocked,这里可以直接加wrlock。并没有涉及到锁的切换(versionlock 是locallock类型)。
bool can_wrlock() const {
    return !is_xlocked();
  }

 

  • 对"a"的CDentry的lock (属于simplelock)加xlock,即进行xlock_start,最初锁的状态为LOCK_SYNC,而这种状态是不可以直接加xlock的,具体判断这里先不细讲,后面研究lock时,再扩展。
bool can_xlock(client_t client) const {
    return get_sm()->states[state].can_xlock == ANY ||
      (get_sm()->states[state].can_xlock == AUTH && parent->is_auth()) ||
      (get_sm()->states[state].can_xlock == XCL && client >= 0 && get_xlock_by_client() == client);
  }

从locks.cc中定义的simplelock数组中可以查的get_sm()->states[state].can_xlock == 0不满足上 xlock 条件(不等于0),所以要经过锁切换。

先经过Locker::simple_lock,将锁的状态切换为LOCK_LOCK(过程):LOCK_SYNC --> LOCK_SYNC_LOCK -->LOCK_LOCK。在LOCK_SYNC_LOCK -->LOCK_LOCK的切换过程中,需要判断是否满足条件:即该lock是否leased;是否被rdlocked;该CDentry是否在别的MDS上有副本,如果有,则需要发送LOCK_AC_LOCK消息给拥有副本的MDS,也去对它加锁。这里都满足,因为"a"目录是正在创建的。但是LOCK_LOCK也不能xlock,所以还需要继续切换,即通过Locker::simple_xlock,来切换锁:LOCK_LOCK --> LOCK_LOCK_XLOCK --> LOCK_PEXLOCK。切换成LOCK_PEXLOCK后就可以加xlock了。最后将锁状态切换为LOCK_XLOCK。

  • 对"/"和"test"的CInode的snaplock (是simple_lock类型)加rdlock,它们锁的状态都是LOCK_SYNC,是可以直接加rdlock。这里没有涉及到锁的切换。
  • 对"test"的CInode的filelock加wrlock,最初锁的状态为LOCK_SYNC,不满足加wrlock条件,需要通过Locker::simple_lock对锁进行切换。先将锁切换为中间状态LOCK_SYNC_LOCK,然后判断是否可以切换成LOCK_LOCK状态,在CInode::issued_caps_need_gather中,发现别的客户端拿了"test"目录inode的"Fs"权限(此时filelock的状态为LOCK_SYNC_LOCK,而这种状态的锁,只允许客户端持有"Fc",其他与"F"有关的权限都不允许),所以"test"的CInode的filelock不能切换成LOCK_LOCK状态。需要通过Locker::issue_caps去收回其他客户端持有的"Fs"权限。
void Locker::simple_lock(SimpleLock *lock, bool *need_issue)
{ //need_issue = NULL
  CInode *in = 0;
  if (lock->get_cap_shift())            // 由于lock的type是CEPH_LOCK_IFILE,所以cap_shift为8
    in = static_cast<CInode *>(lock->get_parent());
  int old_state = lock->get_state();    // old_state = LOCK_SYNC
  switch (lock->get_state()) {
  case LOCK_SYNC: lock->set_state(LOCK_SYNC_LOCK); break;
  ......}
  int gather = 0;
  if (lock->is_leased()) { ...... }
  if (lock->is_rdlocked()) gather++;
  if (in && in->is_head()) {
    if (in->issued_caps_need_gather(lock)) {   // in->issued_caps_need_gather(lock) = true
      if (need_issue) *need_issue = true;
      else issue_caps(in);
      gather++;
    }
  }
  ......
  if (gather) {
    lock->get_parent()->auth_pin(lock);
    ......
  } else { ...... }
}

issue_caps代码如下,即遍历"test"目录的CInode中client_caps中保存的各个客户端的Capability,此时通过get_caps_allowed_by_type算出客户端允许的caps为"pAsLsXsFc",而有客户端持有"pAsLsXsFs",所以发送CEPH_CAP_OP_REVOKE消息给客户端,让客户端释放"Fs"权限。

bool Locker::issue_caps(CInode *in, Capability *only_cap)
{ 
  // allowed caps are determined by the lock mode.
  int all_allowed = in->get_caps_allowed_by_type(CAP_ANY);                  // all_allowed = "pAsLsXsFc"
  int loner_allowed = in->get_caps_allowed_by_type(CAP_LONER);              // loner_allowed = "pAsLsXsFc"
  int xlocker_allowed = in->get_caps_allowed_by_type(CAP_XLOCKER);          // xlocker_allowed = "pAsLsXsFc"
  // count conflicts with
  int nissued = 0;        
  // client caps
  map<client_t, Capability>::iterator it;
  if (only_cap) ......                                         // only_cap = NULL
  else it = in->client_caps.begin();      
  for (; it != in->client_caps.end(); ++it) {
    Capability *cap = &it->second;
    if (cap->is_stale()) continue;                             // cap如果过期,就不需要遍历
    // do not issue _new_ bits when size|mtime is projected
    int allowed;
    if (loner == it->first) ......
    else allowed = all_allowed;                               // allowed = all_allowed = "pAsLsXsFc"
    // add in any xlocker-only caps (for locks this client is the xlocker for)
    allowed |= xlocker_allowed & in->get_xlocker_mask(it->first);   // allowed |= 0
    int pending = cap->pending();                                   // pending = "pAsLsXsFs"
    int wanted = cap->wanted();                                     // wanted = "AsLsXsFsx"
    // are there caps that the client _wants_ and can have, but aren't pending?
    // or do we need to revoke?
    if (((wanted & allowed) & ~pending) ||  // missing wanted+allowed caps
	(pending & ~allowed)) {             // need to revoke ~allowed caps.  // (pending & ~allowed) = "Fs"
      // issue
      nissued++;
      // include caps that clients generally like, while we're at it.
      int likes = in->get_caps_liked();       // likes = "pAsxLsxXsxFsx"
      int before = pending;                   // before = "pAsLsXsFs"
      long seq;
      if (pending & ~allowed)
        // (wanted|likes) & allowed & pending = "AsLsXsFsx" | "pAsxLsxXsxFsx" & "pASLsXsFc" & "pASLsXsFs" = "pASLsXs"
	    seq = cap->issue((wanted|likes) & allowed & pending);  // if revoking, don't issue anything new. 
      else ......
      int after = cap->pending();             // after = "pAsLsXs"
      if (cap->is_new()) { ......
      } else {
	    int op = (before & ~after) ? CEPH_CAP_OP_REVOKE : CEPH_CAP_OP_GRANT;   // op = CEPH_CAP_OP_REVOKE
	    if (op == CEPH_CAP_OP_REVOKE) {
		  revoking_caps.push_back(&cap->item_revoking_caps);
		  revoking_caps_by_client[cap->get_client()].push_back(&cap->item_client_revoking_caps);
		  cap->set_last_revoke_stamp(ceph_clock_now());
		  cap->reset_num_revoke_warnings();
	    }
	    auto m = MClientCaps::create(op, in->ino(), in->find_snaprealm()->inode->ino(),cap->get_cap_id(),
                                   cap->get_last_seq(), after, wanted, 0, cap->get_mseq(), mds->get_osd_epoch_barrier());
	    in->encode_cap_message(m, cap);
	    mds->send_message_client_counted(m, it->first);
      }
    }
  }
  return (nissued == 0);  // true if no re-issued, no callbacks
}

发送完revoke cap消息后,在Locker::wrlock_start中,跳出循环,生成 C_MDS_RetryRequest,加入等待队列,等待lock状态变成稳态后,再把请求拿出来执行。

bool Locker::wrlock_start(SimpleLock *lock, MDRequestRef& mut, bool nowait)
{   // nowait = false
    ......
  while (1) {
    // wrlock?
    // ScatterLock中sm是sm_filelock,states是filelock,而此时CInode的filelock->state是LOCK_SYNC_LOCK, filelock[LOCK_SYNC_LOCK].can_wrlock == 0, 所以不可wrlock
    if (lock->can_wrlock(client) && (!want_scatter || lock->get_state() == LOCK_MIX)) { ...... }
    ......
    if (!lock->is_stable()) break;         // 由于此时filelock->state是LOCK_SYNC_LOCK,不是stable的,所以跳出循环
    ......
  }
  if (!nowait) {
    dout(7) << "wrlock_start waiting on " << *lock << " on " << *lock->get_parent() << dendl;
    lock->add_waiter(SimpleLock::WAIT_STABLE, new C_MDS_RetryRequest(mdcache, mut));               // C_MDS_RetryRequest(mdcache, mut))加入等待队列,等待“test”的CInode的filelock变为稳态
    nudge_log(lock);
  }
  return false;
}

接下来客户端会回复caps消息op为CEPH_CAP_OP_UPDATE。MDS通过Locker::handle_client_caps处理caps消息

Locker::handle_client_caps

代码如下

void Locker::handle_client_caps(const MClientCaps::const_ref &m)
{
  client_t client = m->get_source().num();
  snapid_t follows = m->get_snap_follows();                     // follows = 0
  auto op = m->get_op();                                        // op = CEPH_CAP_OP_UPDATE
  auto dirty = m->get_dirty();                                  // dirty = 0
  Session *session = mds->get_session(m);
  ......
  CInode *head_in = mdcache->get_inode(m->get_ino());  // head_in是"test"的CInode
  Capability *cap = 0;
  cap = head_in->get_client_cap(client);             // 获取该client的cap
  bool need_unpin = false;
  // flushsnap?
  if (cap->get_cap_id() != m->get_cap_id()) { ...... }
  else {
    CInode *in = head_in;
    // head inode, and cap
    MClientCaps::ref ack;
    int caps = m->get_caps();      // caps = "pAsLsXs"
    cap->confirm_receipt(m->get_seq(), caps);  // cap->_issued = "pAsLsXs",cap->_pending = "pAsLsXs"
    // filter wanted based on what we could ever give out (given auth/replica status)
    bool need_flush = m->flags & MClientCaps::FLAG_SYNC; 
    int new_wanted = m->get_wanted() & head_in->get_caps_allowed_ever();   // m->get_wanted() = 0
    if (new_wanted != cap->wanted()) {                                     // cap->wanted() = "AsLsXsFsx"
      ......
      adjust_cap_wanted(cap, new_wanted, m->get_issue_seq());              // 将wanted设置为0
    }
    if (updated) { ...... }
    else {
      bool did_issue = eval(in, CEPH_CAP_LOCKS);     // 
      ......
    }
    if (need_flush)
      mds->mdlog->flush();
  }
 out:
  if (need_unpin)
    head_in->auth_unpin(this);
}

在handle_client_caps中将客户端的cap中的_issued和_pending改变为"pAsLsXs"后,开始eval流程,分别eval_any "test"的CInode的filelock,authlock,linklock和xattrlock。

bool Locker::eval(CInode *in, int mask, bool caps_imported)
{ //in是"test"目录的CInode指针,mask = 2496, caps_imported = false
  bool need_issue = caps_imported;           // need_issue = false
  MDSInternalContextBase::vec finishers;
 retry:
  if (mask & CEPH_LOCK_IFILE)                // 此时filelock的state为LOCK_SYNC_LOCK,不是稳态
    eval_any(&in->filelock, &need_issue, &finishers, caps_imported);
  if (mask & CEPH_LOCK_IAUTH)               // 此时authlock的状态为LOCK_SYNC
    eval_any(&in->authlock, &need_issue, &finishers, caps_imported);
  if (mask & CEPH_LOCK_ILINK)               // 此时linklock的状态为LOCK_SYNC
    eval_any(&in->linklock, &need_issue, &finishers, caps_imported);
  if (mask & CEPH_LOCK_IXATTR)              // 此时xattrlock的状态为LOCK_SYNC
    eval_any(&in->xattrlock, &need_issue, &finishers, caps_imported);
  if (mask & CEPH_LOCK_INEST)
    eval_any(&in->nestlock, &need_issue, &finishers, caps_imported);
  if (mask & CEPH_LOCK_IFLOCK)
    eval_any(&in->flocklock, &need_issue, &finishers, caps_imported);
  if (mask & CEPH_LOCK_IPOLICY)
    eval_any(&in->policylock, &need_issue, &finishers, caps_imported);
  // drop loner?
  ......
  finish_contexts(g_ceph_context, finishers);
  if (need_issue && in->is_head())
    issue_caps(in);
  dout(10) << "eval done" << dendl;
  return need_issue;
}

由于filelock的state为LOCK_SYNC_LOCK,不是稳态,所以去eval_gather, state状态的转换过程是LOCK_SYNC_LOCK --> LOCK_LOCK --> LOCK_LOCK_SYNC --> LOCK_SYNC,在mkdir的acquire_lock过程中,将LOCK_SYNC转换成LOCK_LOCK_SYNC,这里再将状态转换回来,转换成LOCK_SYNC。代码如下

void Locker::eval_gather(SimpleLock *lock, bool first, bool *pneed_issue, MDSInternalContextBase::vec *pfinishers)
{  // first = false
  int next = lock->get_next_state();      // next = LOCK_LOCK
  CInode *in = 0;
  bool caps = lock->get_cap_shift();      // caps = 8                      
  if (lock->get_type() != CEPH_LOCK_DN)
    in = static_cast<CInode *>(lock->get_parent());   // 得到"test"的CInode
  bool need_issue = false;
  int loner_issued = 0, other_issued = 0, xlocker_issued = 0;
  if (caps && in->is_head()) {
    in->get_caps_issued(&loner_issued, &other_issued, &xlocker_issued, lock->get_cap_shift(), lock->get_cap_mask());
    // 得到loner_issued = 0,other_issued = 0,xlocker_issued = 0
 ......
  }
#define IS_TRUE_AND_LT_AUTH(x, auth) (x && ((auth && x <= AUTH) || (!auth && x < AUTH)))
  bool auth = lock->get_parent()->is_auth();
  if (!lock->is_gathering() &&   // gather_set为空,即其他mds并不需要获取锁,所以lock不处于gathering中,
      (IS_TRUE_AND_LT_AUTH(lock->get_sm()->states[next].can_rdlock, auth) || !lock->is_rdlocked()) &&
      (IS_TRUE_AND_LT_AUTH(lock->get_sm()->states[next].can_wrlock, auth) || !lock->is_wrlocked()) &&
      (IS_TRUE_AND_LT_AUTH(lock->get_sm()->states[next].can_xlock, auth) || !lock->is_xlocked()) &&
      (IS_TRUE_AND_LT_AUTH(lock->get_sm()->states[next].can_lease, auth) || !lock->is_leased()) &&
      !(lock->get_parent()->is_auth() && lock->is_flushing()) &&  // i.e. wait for scatter_writebehind!
      (!caps || ((~lock->gcaps_allowed(CAP_ANY, next) & other_issued) == 0 &&
		 (~lock->gcaps_allowed(CAP_LONER, next) & loner_issued) == 0 &&
		 (~lock->gcaps_allowed(CAP_XLOCKER, next) & xlocker_issued) == 0)) &&
      lock->get_state() != LOCK_SYNC_MIX2 &&  // these states need an explicit trigger from the auth mds
      lock->get_state() != LOCK_MIX_SYNC2
      ) {
    if (!lock->get_parent()->is_auth()) {      // 如果是副本,则发送消息给auth的mds, 让auth的mds去加锁
       ......
    } else {
      ......
    }
    lock->set_state(next);               // 将锁转换为LOCK_LOCK
    if (lock->get_parent()->is_auth() && lock->is_stable())
      lock->get_parent()->auth_unpin(lock);
    // drop loner before doing waiters
    if (pfinishers)               
      // 将之前的mkdir的C_MDS_RetryRequest取出,放入pfinishers中                   
      lock->take_waiting(SimpleLock::WAIT_STABLE|SimpleLock::WAIT_WR|SimpleLock::WAIT_RD|SimpleLock::WAIT_XLOCK, *pfinishers);
    ...
    if (caps && in->is_head())  need_issue = true;
    if (lock->get_parent()->is_auth() && lock->is_stable())  try_eval(lock, &need_issue);
  }
  if (need_issue) {
    if (pneed_issue)
      *pneed_issue = true;
    else if (in->is_head())
      issue_caps(in);
  }
}

在eval_gather中只是将LOCK_SYNC_LOCK转换成LOCK_LOCK,在Locker::simple_sync中将lock转换为LOCK_SYNC, 代码如下

bool Locker::simple_sync(SimpleLock *lock, bool *need_issue)
{
  CInode *in = 0;
  if (lock->get_cap_shift())
    in = static_cast<CInode *>(lock->get_parent());
  int old_state = lock->get_state();   // old_state = LOCK_LOCK
  if (old_state != LOCK_TSYN) {
    switch (lock->get_state()) {
    case LOCK_LOCK: lock->set_state(LOCK_LOCK_SYNC); break;  // 将state转换成LOCK_LOCK_SYNC
    ......
    }
    int gather = 0; 
  }
  ......
  lock->set_state(LOCK_SYNC);                               // 将state转换成LOCK_SYNC
  lock->finish_waiters(SimpleLock::WAIT_RD|SimpleLock::WAIT_STABLE);     // 此时waiting之前被取出来了,所以waiting为空
  if (in && in->is_head()) {
    if (need_issue) *need_issue = true;
    ......
  }
  return true;
}

流程为

由于其他4个锁的状态都是LOCK_SYNC,不需要去转换状态,所以在eval_gather中并没有做实际的事情。接下来在finish_contexts中执行finishers中的回调函数,finishers存了之前的C_MDS_RetryRequest。即重新执行handle_client_mkdir

void C_MDS_RetryRequest::finish(int r)
{
  mdr->retry++;
  cache->dispatch_request(mdr);
}

流程为:

即重来一遍handle_client_mkdir,虽说是重来一遍,但由于之前request中保存了一些数据,所有有些过程不用重走。Server::rdlock_path_xlock_dentry与之前一样,就不重复分析,再来一遍Locker::acquire_locks

Locker::acquire_locks

之前讲了Locker::acquire_locks分为3个步骤:整理 (收集)xlocks、wrlock和rdlocks;auth_pin住元数据;开始  (上)锁。

前两个步骤之前已经研究了,所以直接从第三个步骤开始。上一次是在对"test"的filelock加wrlock时,没加成功,所以这里直接从对"test"的filelock加wrlock开始。将锁切换为中间状态LOCK_SYNC_LOCK后,CInode::issued_caps_need_gather中并没有发现别的客户端拿了"test"目录inode的与"F"有关的权限,所以直接将lock的状态设为LOCK_LOCK。代码如下

void Locker::simple_lock(SimpleLock *lock, bool *need_issue)
{
  CInode *in = 0;
  if (lock->get_cap_shift())            // 由于lock的type是CEPH_LOCK_IFILE,所以cap_shift为8
    in = static_cast<CInode *>(lock->get_parent());
  int old_state = lock->get_state();    // old_state = LOCK_SYNC
  switch (lock->get_state()) {
  case LOCK_SYNC: lock->set_state(LOCK_SYNC_LOCK); break;
  ......}
  int gather = 0;
  if (lock->is_leased()) { ...... }
  if (lock->is_rdlocked()) ......;
  if (in && in->is_head()) {
    if (in->issued_caps_need_gather(lock)) { ... }
  }
  ...
  if (gather) { ...
  } else {
    lock->set_state(LOCK_LOCK);           
    lock->finish_waiters(ScatterLock::WAIT_XLOCK|ScatterLock::WAIT_WR|ScatterLock::WAIT_STABLE);
  }
}

"test"的CInode的filelock状态为LOCK_LOCK时,就可以被加上wrlock了。加锁结束。

接下来是对"test"的CInode的authlock (属于SimpleLock )加rdlock。它的锁的状态是LOCK_SYNC,是可以直接加rdlock。这里没有涉及到锁的切换。

对"test"的CInode的nestlock(属于ScatterLock )加wrlock。而此时nestlock的状态已经是LOCK_LOCK,这个状态估计是之前的请求中加上的。可以直接加上wrlock。自此,acquire_lock过程完结。

总结:在acquire_lock中对7个lock("a"的CDentry的versionlock和lock, “/”目录的snaplock,"test"的CInode的snaplock、filelock、authlock、nestlock)加锁。锁的状态变化如下图

接下来就是生成"a"目录的CInode,处理函数Server::prepare_new_inode,

见下一篇。

接上一篇

Server::prepare_new_inode

生成CInode过程比较简单,分配一个inode号,以及填充其他的内容到CInode。代码如下

CInode* Server::prepare_new_inode(MDRequestRef& mdr, CDir *dir, inodeno_t useino, unsigned mode, file_layout_t *layout)
{ // dir是"test"的CDir,useino = 0,layout = NULL
  CInode *in = new CInode(mdcache);
  bool allow_prealloc_inos = !mdr->session->is_opening();      // allow_prealloc_inos = true
  if (allow_prealloc_inos && mdr->session->info.prealloc_inos.size()) {
    mdr->used_prealloc_ino =  in->inode.ino = mdr->session->take_ino(useino);  // prealloc -> used,拿出一个inode号
    mds->sessionmap.mark_projected(mdr->session);
  } else { ...}
  ...
  in->inode.version = 1;
  in->inode.xattr_version = 1;
  in->inode.nlink = 1;   // FIXME
  in->inode.mode = mode;
  memset(&in->inode.dir_layout, 0, sizeof(in->inode.dir_layout));
  if (in->inode.is_dir()) {
    // in->inode.dir_layout.dl_dir_hash = 0x2
    in->inode.dir_layout.dl_dir_hash = g_conf()->mds_default_dir_hash;     
  } 
  in->inode.truncate_size = -1ull;  // not truncated, yet!,超大的数字
  in->inode.truncate_seq = 1; /* starting with 1, 0 is kept for no-truncation logic */
  CInode *diri = dir->get_inode();         // diri是"test"的CInode
  // diri->inode.mode = 040777,即“test”的mode, mode = 040755
  if (diri->inode.mode & S_ISGID) { ...... } 
  else in->inode.gid = mdr->client_request->get_caller_gid();
  in->inode.uid = mdr->client_request->get_caller_uid();
  in->inode.btime = in->inode.ctime = in->inode.mtime = in->inode.atime = mdr->get_op_stamp();
  in->inode.change_attr = 0;
  const MClientRequest::const_ref &req = mdr->client_request;
  if (!mds->mdsmap->get_inline_data_enabled() ||
      !mdr->session->get_connection()->has_feature(CEPH_FEATURE_MDS_INLINE_DATA))
    in->inode.inline_data.version = CEPH_INLINE_NONE;
  mdcache->add_inode(in);  // add, 将inode加入mdcache的inode_map中
  return in;
}

CDentry和CInode都已经创建,接着就是创建CDir

=======================

CInode::get_or_open_dirfrag

代码如下,关于frag_t,这个作为dirfrags中的key,与目录分片有关,具体后面再研究。

CDir *CInode::get_or_open_dirfrag(MDCache *mdcache, frag_t fg)
{  // fg._enc = 0
  // 由于CInode是刚刚新生成的,所以dirfrags为空,所以找不到fg对应的CDir
  CDir *dir = get_dirfrag(fg);             // dir = NULL
  if (!dir) {
    // create it. 生成新的CDir
    dir = new CDir(this, fg, mdcache, is_auth());
    add_dirfrag(dir);                   // 加入到CInode的dirfrags中
  }
  return dir;
}

创建目录后,需要去更改父目录中的元数据,即MDCache::predirty_journal_parents

MDCache::predirty_journal_parents

MDCache::predirty_journal_parents也是一个大函数,我把它分为两个步骤

1,更新目录"test","/"的CDir的fnode_t中的fragstat、rstat和CInode的inode_t中的dirstat、rstat(但是"/"的CInode的inode_t的rstat并不在这里更新)

2,记录"mkdir"事件中metablob,即lump_map中记录了"/"到“a”的dirlump,roots中记录了"/"的fullbit将这两个分别研究,第一步其实就是一个while循环遍历,遍历"test"、"/"的CDir。这里就先研究遍历"test"的CDir,代码如下

void MDCache::predirty_journal_parents(MutationRef mut, EMetaBlob *blob,CInode *in, CDir *parent,
				       int flags, int linkunlink,snapid_t cfollows)
{
  bool primary_dn = flags & PREDIRTY_PRIMARY;  // primary_dn = true
  bool do_parent_mtime = flags & PREDIRTY_DIR; // do_parent_mtime = true
  bool shallow = flags & PREDIRTY_SHALLOW;     // shallow = false
  // make sure stamp is set
  if (mut->get_mds_stamp() == utime_t())
    mut->set_mds_stamp(ceph_clock_now());
  // build list of inodes to wrlock, dirty, and update
  list<CInode*> lsi;
  CInode *cur = in;           // cur就是"a"目录的CInode指针
  CDentry *parentdn = NULL;
  bool first = true;
  while (parent) {        // parent 是"test"的CDir指针  
    // opportunistically adjust parent dirfrag
    CInode *pin = parent->get_inode(); // pin就是"test"的CInode指针
    // inode -> dirfrag
    mut->auth_pin(parent);            // auth pin "test"的CDir
    mut->add_projected_fnode(parent); // 将"test"的CDir放入mdr的projected_fnode的list中
    fnode_t *pf = parent->project_fnode();  // 获取"test"的CDir中的projected_fnode中的最后一个fnode_t
    pf->version = parent->pre_dirty();
    if (do_parent_mtime || linkunlink) {
      // update stale fragstat/rstat?
      parent->resync_accounted_fragstat();
      parent->resync_accounted_rstat();
      if (do_parent_mtime) {
	pf->fragstat.mtime = mut->get_op_stamp(); // 修改“test”目录的pf->fragstat.mtime
	pf->fragstat.change_attr++;      // change_attr = 1
	if (pf->fragstat.mtime > pf->rstat.rctime) {
	  pf->rstat.rctime = pf->fragstat.mtime;
	} 
      }
      if (linkunlink) {
	if (in->is_dir()) {
	  pf->fragstat.nsubdirs += linkunlink;  // pf->fragstat.nsubdirs += 1 = 1
	} else { ... }
      }
    }
    if (!primary_dn) {
      // don't update parent this pass
    } else if (!linkunlink && !(pin->nestlock.can_wrlock(-1) &&
				pin->versionlock.can_wrlock())) { ...
    } else {
      if (linkunlink) {
	assert(pin->nestlock.get_num_wrlocks() || mut->is_slave());
      }

      if (mut->wrlocks.count(&pin->nestlock) == 0) {
	dout(10) << " taking wrlock on " << pin->nestlock << " on " << *pin << dendl;
	mds->locker->wrlock_force(&pin->nestlock, mut);
      }
      ...
      parent->resync_accounted_rstat();
      // 更新父目录"test"中的rstat,即rstat中rsubdirs + 1
      project_rstat_inode_to_frag(cur, parent, first, linkunlink, prealm);
      cur->clear_dirty_rstat();
    }
    bool stop = false;
    ...
    // can cast only because i'm passing nowait=true in the sole user
    MDRequestRef mdmut = static_cast<MDRequestImpl*>(mut.get());
    ...
    if (!mut->wrlocks.count(&pin->versionlock))
      // 对“test”的CInode的versionlock加锁
      mds->locker->local_wrlock_grab(&pin->versionlock, mut);
    pin->last_dirstat_prop = mut->get_mds_stamp();
    // dirfrag -> diri
    mut->auth_pin(pin);               
    mut->add_projected_inode(pin);  // 将"test"的CInode加入projected_inodes中
    lsi.push_front(pin);
    pin->pre_cow_old_inode();  // avoid cow mayhem!
    // pi是“test”的Inode_t, 这里会新建一个projected_inode_t,并插入CInode的projected_nodes中
    inode_t *pi = pin->project_inode();
    pi->version = pin->pre_dirty();
    // dirstat
    if (do_parent_mtime || linkunlink) {
      bool touched_mtime = false, touched_chattr = false;
      // 更新"test"的CInode的inode_t的dirstat中的nsubdirs,即nsubdirs = 1
      pi->dirstat.add_delta(pf->fragstat, pf->accounted_fragstat, &touched_mtime, &touched_chattr);
      pf->accounted_fragstat = pf->fragstat;
      if (touched_mtime)
	pi->mtime = pi->ctime = pi->dirstat.mtime;
      if (touched_chattr)
	pi->change_attr = pi->dirstat.change_attr;     
      ...
    }
    // stop?
    if (pin->is_base()) break;
    parentdn = pin->get_projected_parent_dn();   // 得到"test"中的projected_parent中的CDentry
    // rstat
    parent->resync_accounted_rstat();
    parent->dirty_old_rstat.clear();
    //将"test"的CDir中的fnode_t的rstat新增的值,加入到"test"的CInode的inode_t中的rstat
    project_rstat_frag_to_inode(pf->rstat, pf->accounted_rstat, parent->first, CEPH_NOSNAP, pin, true);//false);
    pf->accounted_rstat = pf->rstat;
    parent->check_rstats();
    broadcast_quota_to_client(pin);
    // next parent!
    cur = pin;    // cur变成了"test"
    parent = parentdn->get_dir();// parent = "/"的CDir
    linkunlink = 0;
    do_parent_mtime = false;
    primary_dn = true;
    first = false;          
  }
  ...
}

遍历"/"的CDir,其实和遍历"test"的CDir差不多,只不过在while循环中,跳出循环了,所以没有更新到"/"的CInode的inode_t的rstat。

if (pin->is_base()) break

第二步是更新"mkdir"的EUpdate事件中的元数据

在handle_client_mkdir中,记录了"mkdir"的日志。

EUpdate *le = new EUpdate(mdlog, "mkdir");

日志中不仅要记录操作,也要记录修改的元数据,这些保存在le->metablob中,在MDCache::predirty_journal_parents中的代码如下

void MDCache::predirty_journal_parents(MutationRef mut, EMetaBlob *blob,CInode *in, CDir *parent,
				       int flags, int linkunlink,snapid_t cfollows)
{
 ...
  blob->add_dir_context(parent);
  blob->add_dir(parent, true);
  for (list<CInode*>::iterator p = lsi.begin();
       p != lsi.end();
       ++p) {
    CInode *cur = *p;
    journal_dirty_inode(mut.get(), blob, cur);
  }
}

这里面的操作比较琐碎,直接跳出来看,看le->metablob中最后填充了什么元数据

class EMetaBlob {

public:
  ......
  // lump_order中有"/"、"test"、"a"的CDir的dirfrag_t
  list<dirfrag_t>         lump_order;
  // lump_map中存有{<"/"的CDir的dirfrag_t, "/"的dirlump>  
  //                   其中dirlump中fnode("/"的CDir的fnode_t), dfull:fullbit("test")
  //                <"test"的CDir的dirfrag_t, "test"的dirlump> 
  //                   其中dirlump中fnode("test"的CDir的fnode_t), dfull:fullbit("a") 
  //                <"a"的CDir的dirfrag_t, "a"的dirlump> 
  //                   其中dirlump中fnode("a"的CDir的fnode_t), dfull为空                                                            
  map<dirfrag_t, dirlump> lump_map;                                                     
  // roots中只有"/"的fullbit,fullbit中主要有inode_t                                                   
  list<ceph::shared_ptr<fullbit> > roots;   
public:
  list<pair<__u8,version_t> > table_tids;  // tableclient transactions
  inodeno_t opened_ino;         // "a"目录的inode号
  ...
}

可以看到lump_order存的是"/"、"test"、"a"的CDir的dirfrag_t,roots存的就是根目录的fullbit,这里面最重要的就是lump_map,lump_map存的是dirfrag_t和dirlump的键值对,dirlump如下,fnode来自于CDir,主要存的是目录下的文件和目录数,以及时间,大小。而dfull中存的是fullbit的指针集合,fullbit中最重要的就是inode_t

 struct dirlump {
 public
    //version_t  dirv;
    fnode_t fnode;
    __u32 state;
    __u32 nfull, nremote, nnull;

  private:
    ...
    mutable list<ceph::shared_ptr<fullbit> > dfull;
    ...
}

之后就是Locker::issue_new_caps

Locker::issue_new_caps

这个很简单,就新建Capability保存在"a"目录CInode的client_caps中,并且给"a"目录CInode的lock设置锁状态。经过一番操作,"a"的CInode的各种锁状态如下

基本上请求处理完了,这个时候就得回复客户端。

Server::journal_and_reply

有两次回复,以下刷日志为分界。第一次回复处理函数是Server::early_reply。

void Server::early_reply(MDRequestRef& mdr, CInode *tracei, CDentry *tracedn)
{
  ...
  MClientRequest *req = mdr->client_request;
  entity_inst_t client_inst = req->get_source_inst();
  MClientReply *reply = new MClientReply(req, 0);      // 新建reply
  reply->set_unsafe();                                 // reply中的head.safe = 0
  mds->locker->set_xlocks_done(mdr.get(), req->get_op() == CEPH_MDS_OP_RENAME);   //"a"的CDentry的lock的state = LOCK_XLOCKDONE  
  if (tracei || tracedn) {
    if (tracei) mdr->cap_releases.erase(tracei->vino());
    if (tracedn) mdr->cap_releases.erase(tracedn->get_dir()->get_inode()->vino());
    // 填充reply,并给新建的"a"的cap中_issued和_pending赋值
    set_trace_dist(mdr->session, reply, tracei, tracedn, mdr->snapid, req->get_dentry_wanted(), mdr);
  }
  reply->set_extra_bl(mdr->reply_extra_bl);
  req->get_connection()->send_message(reply);          // 发送消息
  mdr->did_early_reply = true;                   
  ......
  mdr->mark_event("early_replied");
}

early_reply中填充了reply的信息,包括"test","a"的inode信息,并给"a"的Capability赋上权限,根据filelock、authlock、linklock、xattrlock的状态算出来的权限信息是"pAsxLsXsxFsx"。

第一次回复完后,就得提交日志,以便日志落盘,在journal_and_reply函数入参中注册了回调new C_MDS_mknod_finish(this, mdr, dn, newi),当日志落盘成功后,会去执行回调C_MDS_mknod_finish::finish函数。submit_entry函数如下

void submit_entry(LogEvent *e, MDSLogContextBase *c = 0) {
    Mutex::Locker l(submit_mutex);
    _submit_entry(e, c);
    submit_cond.Signal();
  }

MDLog::_submit_entry函数如下

void MDLog::_submit_entry(LogEvent *le, MDSLogContextBase *c)
{
  cur_event = NULL;                           // 将当前事件置空
  LogSegment *ls = segments.rbegin()->second; // 获取LogSegment
  ls->num_events++;                           // 事件数++
  le->_segment = ls;
  le->update_segment();
  le->set_stamp(ceph_clock_now());
  mdsmap_up_features = mds->mdsmap->get_up_features();
  // 新建PendingEvent并加入pending_events中
  pending_events[ls->seq].push_back(PendingEvent(le, c));   
  num_events++;
  unflushed++;                                              // 
  uint64_t period = journaler->get_layout_period();        // period = 4M
  // start a new segment?
  if (le->get_type() == EVENT_SUBTREEMAP ||
      (le->get_type() == EVENT_IMPORTFINISH && mds->is_resolve())) {
  } else if (ls->end/period != ls->offset/period ||                      // 如果LogSegment中end和offset不在一个对象中
	     ls->num_events >= g_conf->mds_log_events_per_segment) {         // 或者LogSegment中事件数>=1024个,就开始新的LogSegment
    _start_new_segment();
  } else if (g_conf->mds_debug_subtrees && le->get_type() != EVENT_SUBTREEMAP_TEST) { ...... }
}

接下来就是唤醒MDLog中的md_submit线程,去处理pending_events队列中的PendingEvent。关于MDLog如何下刷日志,这个暂不扩展,之后研究。

journal_and_reply最后一个操作就是drop_rdlocks,之前对"test"目录CInode的authlock和snaplock、"\"的CInode的snaplock加了rdlock,这里就是将读锁丢掉。为什么要去drop_rdlock,这是因为如果有别的请求要对该对象去加wrlock/xlock时,都会经过simple_lock,在simple_lock中要将锁切换成LOCK_LOCK,在这过程中,如果该对象已经被rdlock了,则不能加LOCK_LOCK,加锁失败,请求就无法往下执行;而之后丢掉rdlock,在symple_sync中将锁切换成稳态LOCK_SYNC后,再执行之前未加锁成功的请求。

C_MDS_mknod_finish

接下来研究回调C_MDS_mknod_finish的finish函数

代码如下,

  void finish(int r) override {
    // link the inode
    // 1,取出并删除"a"的CDentry中projected的linkage_t元素,并给CDentry的linkage赋值(主要是赋上CInode的指针)
    // 2,取出并删除"a"的CInode的projected_parent中的第一个元素,并给CInode的parent赋上CDentry
    dn->pop_projected_linkage(); 
    // be a bit hacky with the inode version, here.. we decrement it
    // just to keep mark_dirty() happen. (we didn't bother projecting
    // a new version of hte inode since it's just been created)
    newi->inode.version--; 
    newi->mark_dirty(newi->inode.version + 1, mdr->ls);
    newi->_mark_dirty_parent(mdr->ls, true);
    // mkdir?
    if (newi->inode.is_dir()) { 
      CDir *dir = newi->get_dirfrag(frag_t());
      assert(dir);
      dir->fnode.version--;
      dir->mark_dirty(dir->fnode.version + 1, mdr->ls);
      dir->mark_new(mdr->ls);
    }
    // 取出并删除CInode的projected_inodes中的第一个,并更新"test"、“/”的CInode的inode
    // 取出并删除CDir的projected_fnodes中的第一个,并更新"test"、“/”的CDir的fnode
    mdr->apply();
    MDRequestRef null_ref;
    // 如果"a"的CDentry有副本,则将"a"的inode,父目录的dirfrag和子树根的dirfrag发送 副本
    get_mds()->mdcache->send_dentry_link(dn, null_ref);
    ...
    // hit pop
    get_mds()->balancer->hit_inode(mdr->get_mds_stamp(), newi, META_POP_IWR);
    // reply
    server->respond_to_request(mdr, 0);
  }

get_mds()->balancer->hit_inode会去更新该目录的写热度,这个之后再研究。mkdir的最后一步就是respond_to_request --> Server::reply_client_request

Server::reply_client_request,代码如下

void Server::reply_client_request(MDRequestRef& mdr, MClientReply *reply)
{
  ...
  snapid_t snapid = mdr->snapid;
  CInode *tracei = mdr->tracei;          // mdr->tracei就是"a"的CInode
  CDentry *tracedn = mdr->tracedn;       // mdr->tracedn就是"za"的CDentry
  bool is_replay = mdr->client_request->is_replay();      // is_replay = false
  bool did_early_reply = mdr->did_early_reply;            // did_early_reply = true       
  entity_inst_t client_inst = req->get_source_inst();
  int dentry_wanted = req->get_dentry_wanted();        //
  if (!did_early_reply && !is_replay) { ... }
  // drop non-rdlocks before replying, so that we can issue leases
  mdcache->request_drop_non_rdlocks(mdr);
  // reply at all?
  if (client_inst.name.is_mds() || !session) { ...
  } else { // send reply.
    if (!did_early_reply &&   // don't issue leases if we sent an earlier reply already
	(tracei || tracedn)) { ... }  // 如果没有进行early_reply,则去将内容填充给回复
    // We can set the extra bl unconditionally: if it's already been sent in the
    // early_reply, set_extra_bl will have claimed it and reply_extra_bl is empty
    reply->set_extra_bl(mdr->reply_extra_bl);
    reply->set_mdsmap_epoch(mds->mdsmap->get_epoch());
    req->get_connection()->send_message(reply);            // 发送回复
  }
  // clean up request
  mdcache->request_finish(mdr);
  // take a closer look at tracei, if it happens to be a remote link
  if (tracei && tracedn && tracedn->get_projected_linkage()->is_remote()) {
    mdcache->eval_remote(tracedn);
  }
}

在Server::reply_client_request中会调用request_drop_non_rdlocks,去drop wrlock,这些wrlock是在之前acquire_lock里加的wrlock。加上了wrlock,该元数据之后的其他会加rdlock的操作等,会被阻塞,这里丢掉wrlock,会触发之前阻塞的操作继续执行。

之后给客户端第二次回复,表明日志已经下刷。最后会调用request_finish去做收尾工作,这里面会去auth_unpin之前pin住的元数据。

posted on 2022-10-04 01:21  bdy  阅读(200)  评论(0编辑  收藏  举报

导航