web实时消息推送方案 - (个人简历项目要引申)
一 什么是消息推送
推送的场景比较多,比如有人关注我的公众号,这时我就会收到一条推送消息,以此来吸引我点击打开应用。
消息推送通常是指网站的运营工作等人员,通过某种工具对用户当前网页或移动设备 APP 进行的主动消息推送。
消息推送一般又分为 Web 端消息推送和移动端消息推送。
移动端消息推送示例:
Web 端消息推送示例:
在具体实现之前,咱们再来分析一下前边的需求,其实功能很简单,只要触发某个事件(主动分享了资源或者后台主动推送消息),Web 页面的通知小红点就会实时的 +1
就可以了。
通常在服务端会有若干张消息推送表,用来记录用户触发不同事件所推送不同类型的消息,前端主动查询(拉)或者被动接收(推)用户所有未读的消息数。
二 消息推送常见方案
2.1 短轮询
短轮询很好理解,指定的时间间隔,由浏览器向服务器发出 HTTP 请求,服务器实时返回未读消息数据给客户端,浏览器再做渲染显示。
一个简单的 JS 定时器就可以搞定,每秒钟请求一次未读消息数接口,返回的数据展示即可。
效果还是可以的,短轮询实现固然简单,缺点也是显而易见,由于推送数据并不会频繁变更,无论后端此时是否有新的消息产生,客户端都会进行请求,势必会对服务端造成很大压力,浪费带宽和服务器资源。
2.2 长轮询
长轮询是对上边短轮询的一种改进版本,在尽可能减少对服务器资源浪费的同时,保证消息的相对实时性。长轮询在中间件中应用的很广泛,比如 Nacos 和 Apollo 配置中心,消息队列 Kafka、RocketMQ 中都有用到长轮询。
长轮询其实原理跟轮询差不多,都是采用轮询的方式。不过,如果服务端的数据没有发生变更,会 一直 hold 住请求,直到服务端的数据发生变化,或者等待一定时间超时才会返回。返回后,客户端又会立即再次发起下一次长轮询。
长轮询相比于短轮询在性能上提升了很多,但依然会产生较多的请求,这是它的一点不完美的地方。
2.3 iframe流
iframe 流就是在页面中插入一个隐藏的<iframe>
标签,通过在src
中请求消息数量 API 接口,由此在服务端和客户端之间创建一条长连接,服务端持续向iframe
传输数据。
传输的数据通常是 HTML、或是内嵌的 JavaScript 脚本,来达到实时更新页面的效果。
iframe 流的服务器开销很大,而且 IE、Chrome 等浏览器一直会处于 loading 状态,图标会不停旋转,简直是强迫症杀手。
2.4 SSE(推荐)
很多人可能不知道,服务端向客户端推送消息,其实除了可以用WebSocket
这种耳熟能详的机制外,还有一种服务器发送事件(Server-Sent Events),简称 SSE。这是一种服务器端到客户端(浏览器)的单向消息推送。
大名鼎鼎的 ChatGPT 就是采用的 SSE。对于需要长时间等待响应的对话场景,ChatGPT 采用了一种巧妙的策略:它会将已经计算出的数据“推送”给用户,并利用 SSE 技术在计算过程中持续返回数据。这样做的好处是可以避免用户因等待时间过长而选择关闭页面。
SSE 基于 HTTP 协议的,我们知道一般意义上的 HTTP 协议是无法做到服务端主动向客户端推送消息的,但 SSE 是个例外,它变换了一种思路。
SSE 在服务器和客户端之间打开一个单向通道,服务端响应的不再是一次性的数据包而是text/event-stream
类型的数据流信息,在有数据变更时从服务器流式传输到客户端。
整体的实现思路有点类似于在线视频播放,视频流会连续不断的推送到浏览器,你也可以理解成,客户端在完成一次用时很长(网络不畅)的下载。
SSE 与 WebSocket 作用相似,都可以建立服务端与浏览器之间的通信,实现服务端向客户端推送消息,但还是有些许不同:
- SSE 是基于 HTTP 协议的,它们不需要特殊的协议或服务器实现即可工作;WebSocket 需单独服务器来处理协议。
- SSE 单向通信,只能由服务端向客户端单向通信;WebSocket 全双工通信,即通信的双方可以同时发送和接受信息。
- SSE 实现简单开发成本低,无需引入其他组件;WebSocket 传输数据需做二次解析,开发门槛高一些。
- SSE 默认支持断线重连;WebSocket 则需要自己实现。
- SSE 只能传送文本消息,二进制数据需要经过编码后传送;WebSocket 默认支持传送二进制数据。
2.5 Websocket
Websocket 应该是大家都比较熟悉的一种实现消息推送的方式,上边我们在讲 SSE 的时候也和 Websocket 进行过比较。
是一种在 TCP 连接上进行全双工通信的协议,建立客户端和服务器之间的通信渠道。浏览器和服务器仅需一次握手,两者之间就直接可以创建持久性的连接,并进行双向数据传输。
WebSocket 的工作过程可以分为以下几个步骤:
- 客户端向服务器发送一个 HTTP 请求,请求头中包含
Upgrade: websocket
和Sec-WebSocket-Key
等字段,表示要求升级协议为 WebSocket; - 服务器收到这个请求后,会进行升级协议的操作,如果支持 WebSocket,它将回复一个 HTTP 101 状态码,响应头中包含 ,
Connection: Upgrade
和Sec-WebSocket-Accept: xxx
等字段、表示成功升级到 WebSocket 协议。 - 客户端和服务器之间建立了一个 WebSocket 连接,可以进行双向的数据传输。数据以帧(frames)的形式进行传送,而不是传统的 HTTP 请求和响应。WebSocket 的每条消息可能会被切分成多个数据帧(最小单位)。发送端会将消息切割成多个帧发送给接收端,接收端接收消息帧,并将关联的帧重新组装成完整的消息。
- 客户端或服务器可以主动发送一个关闭帧,表示要断开连接。另一方收到后,也会回复一个关闭帧,然后双方关闭 TCP 连接。
另外,建立 WebSocket 连接之后,通过心跳机制来保持 WebSocket 连接的稳定性和活跃性。
2.6 MQTT
MQTT (Message Queue Telemetry Transport)是一种基于发布/订阅(publish/subscribe)模式的轻量级通讯协议,通过订阅相应的主题来获取消息,是物联网(Internet of Thing)中的一个标准传输协议。
该协议将消息的发布者(publisher)与订阅者(subscriber)进行分离,因此可以在不可靠的网络环境中,为远程连接的设备提供可靠的消息服务,使用方式与传统的 MQ 有点类似。
TCP 协议位于传输层,MQTT 协议位于应用层,MQTT 协议构建于 TCP/IP 协议上,也就是说只要支持 TCP/IP 协议栈的地方,都可以使用 MQTT 协议。
为什么要用 MQTT 协议?
MQTT 协议为什么在物联网(IOT)中如此受偏爱?而不是其它协议,比如我们更为熟悉的 HTTP 协议呢?
- 首先 HTTP 协议它是一种同步协议,客户端请求后需要等待服务器的响应。而在物联网(IOT)环境中,设备会很受制于环境的影响,比如带宽低、网络延迟高、网络通信不稳定等,显然异步消息协议更为适合 IOT 应用程序。
- HTTP 是单向的,如果要获取消息客户端必须发起连接,而在物联网(IOT)应用程序中,设备或传感器往往都是客户端,这意味着它们无法被动地接收来自网络的命令。
- 通常需要将一条命令或者消息,发送到网络上的所有设备上。HTTP 要实现这样的功能不但很困难,而且成本极高。
具体的 MQTT 协议介绍和实践,这里我就不再赘述了,大家可以参考我之前的两篇文章,里边写的也都很详细了。