第五章_Spark核心编程_Rdd_转换算子_keyValue型_cogroup
1. 定义
/* * 1.定义 * def cogroup[W](other: RDD[(K, W)]): RDD[(K, (Iterable[V], Iterable[W]))] * def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)]) * : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))] * def cogroup[W1, W2, W3](other1: RDD[(K, W1)], * other2: RDD[(K, W2)], * other3: RDD[(K, W3)], * partitioner: Partitioner) * : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2], Iterable[W3]))] * 2.功能 * 将两个(或多个) 类型为(K,V)和(K,W)的RDD 进行fullouterjoin * 返回一个相同 key 对应的所有元素连接在一起的 (K,(Iterable<V>,Iterable<W>))的 RDD * * 3.操作流程 * 1. 对每个Rdd进行分组操作 * rdd1: key,Iterable<V> * rdd2: key,Iterable<W> * rdd3: key,Iterable<Z> * 2. 对多个Rdd 按Key 进行fullOuterJoin * rdd1.cogroup(rdd2,rdd3) * 结果 : key,(Iterable<V>,Iterable<W>,Iterable<Z>) * 4.note * 1. 参数中对多可以传入三个Rdd * */
2.示例
object cogroupTest extends App { val sparkconf: SparkConf = new SparkConf().setMaster("local").setAppName("distinctTest") val sc: SparkContext = new SparkContext(sparkconf) val rdd1: RDD[(Int, String)] = sc.makeRDD(List((1, "刘备"),(1, "刘备1"), (2, "张飞"), (3, "关羽"), (4, "曹操"), (5, "赵云"), (7, "孙权")), 2) val rdd2: RDD[(Int, String)] = sc.makeRDD(List((1, "蜀国"), (2, "蜀国"), (2, "蜀国1") ,(3, "蜀国"), (4, "魏国"), (5, "蜀国"), (6, "吴国")), 3) val rdd3: RDD[(Int, String)] = sc.makeRDD(List((1, "蜀国_"), (2, "蜀国_"), (2, "蜀国1_") ,(3, "蜀国_"), (4, "魏国_"), (5, "蜀国_"), (16, "吴国_")), 3) private val rdd4: RDD[(Int, (Iterable[String], Iterable[String], Iterable[String]))] = rdd1.cogroup(rdd2,rdd3) rdd4.collect().foreach(println(_)) sc.stop() }
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 地球OL攻略 —— 某应届生求职总结
· 提示词工程——AI应用必不可少的技术
· 字符编码:从基础到乱码解决
· SpringCloud带你走进微服务的世界