01_MapRedece概述_1.8 WordCount案例(Scala版本)
1. 在Mac环境搭建Hadoop MapReduce 项目
1. scala项目搭建 https://www.cnblogs.com/bajiaotai/p/15381309.html
2. 添加pom依赖
<dependencies> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>3.1.3</version> </dependency> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-log4j12</artifactId> <version>1.7.30</version> </dependency> </dependencies>
3. 在 src/main/resources 下添加 log4j.properties 文件
log4j.rootLogger=INFO, stdout log4j.appender.stdout=org.apache.log4j.ConsoleAppender log4j.appender.stdout.layout=org.apache.log4j.PatternLayout log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n log4j.appender.logfile=org.apache.log4j.FileAppender log4j.appender.logfile.File=target/spring.log log4j.appender.logfile.layout=org.apache.log4j.PatternLayout log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
2. 代码案例 (scala)
package onePk { import java.lang import org.apache.hadoop.conf.Configuration import org.apache.hadoop.fs.Path import org.apache.hadoop.io.{IntWritable, LongWritable, Text} import org.apache.hadoop.mapreduce.lib.input.FileInputFormat import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat import org.apache.hadoop.mapreduce.{Job, Mapper, Reducer} // Mapper 类 // 每个Mapper类实例 处理一个切片文件 class WCMapper extends Mapper[LongWritable, Text, Text, IntWritable] { var text = new Text var intWritable = new IntWritable(1) // 每行记录调用一次map方法 override def map(key: LongWritable, value: Text, context: Mapper[LongWritable, Text, Text, IntWritable]#Context) = { println("map enter .....") //1. 获取一行记录 val line = value.toString //2. 切割 val words = line.split(" ") //3. 输出到缓冲区 words.foreach( key1 => { text.set(key1); context.write(text, intWritable) } ) } } // Reducer 类 // 所有Mapper实例 执行完毕后 Reducer才会执行 // Mapper类的输出类型 = Reducer类的输入类型 class WCReducer extends Reducer[Text, IntWritable, Text, IntWritable] { var sum: Int = 0 private val intWritable = new IntWritable // 每个key调用一次 // 张飞 <1,1,1,1,1> override def reduce(key: Text, values: lang.Iterable[IntWritable], context: Reducer[Text, IntWritable, Text, IntWritable]#Context) = { println("reduce enter .....") // 1. 对词频数 求sum values.forEach(sum += _.get) // 2. 输出结果 intWritable.set(sum) context.write(key, intWritable) } } // Driver object Driver { def main(args: Array[String]): Unit = { println("1111") //1. 获取配置信息以及 获取job对象 var configuration = new Configuration var job: Job = Job.getInstance(configuration) //2. 注册本Driver程序的jar job.setJarByClass(this.getClass) job.setJobName("scala mr") //3. 注册 Mapper 和 Reducer的jar job.setMapperClass(classOf[WCMapper]) job.setReducerClass(classOf[WCReducer]) //4. 设置Mapper 类输出key-value 数据类型 job.setMapOutputKeyClass(classOf[Text]) job.setMapOutputValueClass(classOf[IntWritable]) //5. 设置最终输出key-value 数据类型 job.setOutputKeyClass(classOf[Text]) job.setOutputValueClass(classOf[IntWritable]) //6. 设置输入输出路径 FileInputFormat.setInputPaths(job, new Path("src/main/data/input")) FileOutputFormat.setOutputPath(job, new Path("src/main/data/output")) //7. 提交job val bool: Boolean = job.waitForCompletion(true) System.exit(bool match { case true => "0".toInt case false => "1".toInt }) } } }
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 地球OL攻略 —— 某应届生求职总结
· 提示词工程——AI应用必不可少的技术
· 字符编码:从基础到乱码解决
· SpringCloud带你走进微服务的世界