doc2vec使用说明(二)gensim工具包 LabeledSentence

欢迎交流,转载请注明出处。

本文介绍gensim工具包中,带标签(一个或者多个)的文档的doc2vec 的向量表示。

应用场景: 当每个文档不仅可以由文本信息表示,还有别的其他标签信息时,比如,在商品推荐中,将每个商品看成是一个文档,我们想学习商品向量表示时,可以只使用商品的描述信息来学习商品的向量表示,但有时:商品类别等信息我们也想将其考虑进去, 最简单的方法是:当用文本信息学习到商品向量后,添加一维商品的类别信息,但只用一维来表示商品类别信息的有效性差。gensim 工具包的doc2vec提供了更加合理的方法,将商品标签(如类别)加入到商品向量的训练中,即gensim 中的LabeledSentence方法

LabeledSentence的输入文件格式:每一行为:<labels, words>, 其中labels 可以有多个,用tab 键分隔,words 用空格键分隔,eg:<id  category  I like my cat demon>.

输出为词典vocabuary 中每个词的向量表示,这样就可以将商品labels:id,类别的向量拼接用作商品的向量表示。

写了个例子,仅供参考(训练一定要加 min_count=1,否则词典不全,这个小问题卡了一天 Doc2Vec(sentences, size = 100, window = 5, min_count=1))

注意:下面的例子是gensim更新之前的用法,gensim更新之后,没有了labels 的属性,换为tags, 且目标向量的表示也由vacb转到docvecs 中。更新后gensim 的用法见例子2.

例子1:gensim 更新前。

 # -*- coding: UTF-8 -*-  
import gensim, logging
import os
from gensim.models.doc2vec import Doc2Vec,LabeledSentence
from gensim.models import Doc2Vec
import gensim.models.doc2vec

asin=set()
category=set()
class LabeledLineSentence(object):
    def __init__(self, filename=object):
        self.filename =filename
    def __iter__(self):
        with open(self.filename,'r') as infile:
            data=infile.readlines(); 
           # print "length: ", len(data)        
        for uid,line in enumerate(data):  
            asin.add(line.split("\t")[0])
            category.add(line.split("\t")[1])
            yield LabeledSentence(words=line.split("\t")[2].split(), labels=[line.split("\t")[0],line.split("\t")[1]])
print 'success'

logging.basicConfig(format = '%(asctime)s : %(levelname)s : %(message)s', level = logging.INFO)
sentences =LabeledLineSentence('product_bpr_train.txt')
model = Doc2Vec(sentences, size = 100, window = 5, min_count=1)
model.save('product_bpr_model.txt')
print  'success1'

#for uid,line in enumerate(model.vocab):
#    print line
print len(model.vocab)
outid = file('product_bpr_id_vector.txt', 'w')
outcate = file('product_bpr_cate_vector.txt', 'w')
for idx, line in enumerate(model.vocab):
    if line in asin :
        outid.write(line +'\t')
        for idx,lv in enumerate(model[line]):
            outid.write(str(lv)+" ")
        outid.write('\n')
    if line in category:
        outcate.write(line + '\t')
        for idx,lv in enumerate(model[line]):
            outcate.write(str(lv)+" ")
        outcate.write('\n')
outid.close()
outcate.close()

 例子2:gensim 更新后

 # -*- coding: UTF-8 -*-  
import gensim, logging
import os
from gensim.models.doc2vec import Doc2Vec,LabeledSentence
from gensim.models import Doc2Vec
import gensim.models.doc2vec

asin=set()
category=set()
class LabeledLineSentence(object):
    def __init__(self, filename=object):
        self.filename =filename
    def __iter__(self):
        with open(self.filename,'r') as infile:
            data=infile.readlines(); 
            print "length: ", len(data)        
        for uid,line in enumerate(data):
            print "line:",line
            asin.add(line.split("\t")[0])
            print "asin: ",asin
            category.add(line.split("\t")[1])
            yield LabeledSentence(words=line.split("\t")[2].split(" "), tags=[line.split("\t")[0], line.split("\t")[1]])
print 'success'

logging.basicConfig(format = '%(asctime)s : %(levelname)s : %(message)s', level = logging.INFO)
sentences =LabeledLineSentence('product_bpr_test_train.txt')
model = Doc2Vec(sentences, size =50, window = 5, min_count=1)
model.save('product_bpr_model50.txt')
print  'success1'

print "doc2vecs length:", len(model.docvecs)
outid = file('product_bpr_id_vector50.txt', 'w')
outcate = file('product_bpr_cate_vector50.txt', 'w')
for id in asin:
    outid.write(id+"\t")
    for idx,lv in enumerate(model.docvecs[id]):
        outid.write(str(lv)+" ")
    outid.write("\n")
for cate in category:
    outcate.write(cate + '\t')
    for idx,lv in enumerate(model.docvecs[cate]):
        outcate.write(str(lv)+" ")
    outcate.write('\n')
outid.close()
outcate.close()

 

参考:

http://rare-technologies.com/doc2vec-tutorial/

https://github.com/RaRe-Technologies/gensim/blob/develop/docs/notebooks/doc2vec-IMDB.ipynb

http://radimrehurek.com/gensim/models/doc2vec.html#blog

posted @ 2016-09-15 16:27  白婷  阅读(16492)  评论(7编辑  收藏  举报