VBPR: Visual Bayesian Personalized Ranking from Implicit Feedback-AAAI2016 -20160422

1、Information

publication:AAAI2016 

2、What

基于BPR模型的改进:在商品喜好偏序对的学习中,将商品图片的视觉信息加入进去,冷启动问题。

3、Dataset

Amazon Women,Amazon Man,Amazon phone,Tradsy.com

4、How

input: 

Ds(u,i,j):用户购买商品偏序关系对的集合,fi:采用Deep CNN训练的item图像特征向量

output:

VBPR模型参数.

本文中只使用了MF模型

MF: X=WH'.输出为W,H,以及item 图片embeding的参数

method:随机选取购买了item i 的group,根据(u,i)>(u,j),随机梯度下降的方法训练模型。

5、Evaluation:AUC

baseline:Random,POPRank,MM-MF, BPR

6、Conclusion

论文贡献:改进模型,提高实验效果。

posted @ 2016-04-22 12:27  白婷  阅读(1541)  评论(0编辑  收藏  举报