排序算法介绍
排序的分类
1) 内部排序: 指将需要处理的所有数据都加载到内部存储器(内存)中进行排序。
2) 外部排序法:数据量过大,无法全部加载到内存中,需要借助外部存储进行排序。
3) 常见的排序算法分类:
算法的时间复杂度
度量一个程序(算法)执行时间的两种方法
1) 事后统计的方法
这种方法可行, 但是有两个问题:
- 一是要想对设计的算法的运行性能进行评测,需要实际运行该程序;
- 二是所得时间的统计量依赖于计算机的硬件、软件等环境因素, 这种方式,要在同一台计算机的相同状态下运行,才能比较那个算法速度更快。
2) 事前估算的方法
通过分析某个算法的时间复杂度来判断哪个算法更优.
时间频度
一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。
- 常见的时间复杂度
1) 常数阶 O(1)
2) 对数阶 O(log2n)
3) 线性阶 O(n)
4) 线性对数阶 O(nlog2n)
5) 平方阶 O(n^2)
6) 立方阶 O(n^3)
7) k 次方阶 O(n^k)
8) 指数阶 O(2^n)
常见的时间复杂度对应的图
说明:
1) 常见的算法时间复杂度由小到大依次为:
Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n^2)<Ο(n^3)< Ο(n^k) < Ο(2^n)
随着问题规模 n 的不断增大,上述时间复杂度不断增大,算法的执行效率越低。
2) 从图中可见,我们应该尽可能避免使用指数阶的算法。
- 平均时间复杂度和最坏时间复杂度
1) 平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,该算法的运行时间。
2) 最坏情况下的时间复杂度称最坏时间复杂度。一般讨论的时间复杂度均是最坏情况下的时间复杂度。这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的界限,这就保证了算法的运行时间不会比最坏情况更长。
3) 平均时间复杂度和最坏时间复杂度是否一致,和算法有关(如图:)。
算法的空间复杂度
1) 类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)定义为该算法所耗费的存储空间,它也是问题规模n 的函数。
2) 空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增大,当n较大时,将占用较多的存储单元,例如快速排序和归并排序算法,基数排序就属于这种情况
3) 在做算法分析时,主要讨论的是时间复杂度。从用户使用体验上看,更看重的程序执行的速度。一些缓存产品(redis, memcache)和算法(基数排序)本质就是用空间换时间。