代码随想录算法训练营Day53 动态规划

代码随想录算法训练营

代码随想录算法训练营Day53 动态规划|●  1143.最长公共子序列 1035.不相交的线 53. 最大子序和 动态规划

1143.最长公共子序列

题目链接:1143.最长公共子序列
给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。
若这两个字符串没有公共子序列,则返回 0。
示例 1:
输入:text1 = "abcde", text2 = "ace" 输出:3 解释:最长公共子序列是 "ace",它的长度为 3。
示例 2: 输入:text1 = "abc", text2 = "abc" 输出:3 解释:最长公共子序列是 "abc",它的长度为 3。
示例 3: 输入:text1 = "abc", text2 = "def" 输出:0 解释:两个字符串没有公共子序列,返回 0。
提示:

  • 1 <= text1.length <= 1000
  • 1 <= text2.length <= 1000 输入的字符串只含有小写英文字符。

总体思路

本题和动态规划:718. 最长重复子数组区别在于这里不要求是连续的了,但要有相对顺序,即:"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。
继续动规五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义
    dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]
    有同学会问:为什么要定义长度为[0, i - 1]的字符串text1,定义为长度为[0, i]的字符串text1不香么?
    这样定义是为了后面代码实现方便,如果非要定义为长度为[0, i]的字符串text1也可以,我在 动态规划:718. 最长重复子数组 中的「拓展」里 详细讲解了区别所在,其实就是简化了dp数组第一行和第一列的初始化逻辑。
  2. 确定递推公式
    主要就是两大情况: text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同
    如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;
    如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。
    即:`dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
    代码如下:
if (text1[i - 1] == text2[j - 1]) {
    dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
  1. dp数组如何初始化
    先看看dp[i][0]应该是多少呢?
    test1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0; 同理dp[0][j]`也是0。
    其他下标都是随着递推公式逐步覆盖,初始为多少都可以,那么就统一初始为0。
    代码:
vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));
  1. 确定遍历顺序
    从递推公式,可以看出,有三个方向可以推出dp[i][j],如图:

    那么为了在递推的过程中,这三个方向都是经过计算的数值,所以要从前向后,从上到下来遍历这个矩阵。
  2. 举例推导dp数组
    以输入:text1 = "abcde", text2 = "ace" 为例,dp状态如图:

    最后红框dp[text1.size()][text2.size()]为最终结果.
class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));
        for (int i = 1; i <= text1.size(); i++) {
            for (int j = 1; j <= text2.size(); j++) {
                if (text1[i - 1] == text2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[text1.size()][text2.size()];
    }
};

1035.不相交的线

题目链接:1035.不相交的线
我们在两条独立的水平线上按给定的顺序写下 A 和 B 中的整数。
现在,我们可以绘制一些连接两个数字 A[i] 和 B[j] 的直线,只要 A[i] == B[j],且我们绘制的直线不与任何其他连线(非水平线)相交。
以这种方法绘制线条,并返回我们可以绘制的最大连线数。

总体思路

绘制一些连接两个数字 A[i] 和 B[j] 的直线,只要 A[i] == B[j],且直线不能相交!
直线不能相交,这就是说明在字符串A中 找到一个与字符串B相同的子序列,且这个子序列不能改变相对顺序,只要相对顺序不改变,链接相同数字的直线就不会相交。
拿示例一A = [1,4,2], B = [1,2,4]为例,相交情况如图:

其实也就是说A和B的最长公共子序列是[1,4],长度为2。 这个公共子序列指的是相对顺序不变(即数字4在字符串A中数字1的后面,那么数字4也应该在字符串B数字1的后面)
这么分析完之后,大家可以发现:本题说是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度!
那么本题就和我们刚刚讲过的这道题目动态规划:1143.最长公共子序列就是一样一样的了。
一样到什么程度呢? 把字符串名字改一下,其他代码都不用改,直接copy过来就行了。

class Solution {
public:
    int maxUncrossedLines(vector<int>& A, vector<int>& B) {
        vector<vector<int>> dp(A.size() + 1, vector<int>(B.size() + 1, 0));
        for (int i = 1; i <= A.size(); i++) {
            for (int j = 1; j <= B.size(); j++) {
                if (A[i - 1] == B[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[A.size()][B.size()];
    }
};

53. 最大子序和 动态规划

题目链接:53. 最大子序和 动态规划
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例: 输入: [-2,1,-3,4,-1,2,1,-5,4] 输出: 6 解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

总体思路

这道题之前在讲解贪心专题的时候用贪心算法解决过一次,贪心算法:最大子序和
这次我们用动态规划的思路再来分析一次。
动规五部曲如下:

  1. 确定dp数组(dp table)以及下标的含义
    dp[i]:包括下标i(以nums[i]为结尾)的最大连续子序列和为dp[i]
  2. 确定递推公式
    dp[i]只有两个方向可以推出来:
  • dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和
  • nums[i],即:从头开始计算当前连续子序列和
    一定是取最大的,所以dp[i] = max(dp[i - 1] + nums[i], nums[i]);
  1. dp数组如何初始化
    从递推公式可以看出来dp[i]是依赖于dp[i - 1]的状态,dp[0]就是递推公式的基础。
    dp[0]应该是多少呢?
    根据dp[i]的定义,很明显dp[0]应为nums[0]即dp[0] = nums[0]。
  2. 确定遍历顺序
    递推公式中dp[i]依赖于dp[i - 1]的状态,需要从前向后遍历。
  3. 举例推导dp数组
    以示例一为例,输入:nums = [-2,1,-3,4,-1,2,1,-5,4],对应的dp状态如下:

    注意最后的结果可不是dp[nums.size() - 1]! ,而是dp[6]。
    在回顾一下dp[i]的定义:包括下标i之前的最大连续子序列和为dp[i]。
    那么我们要找最大的连续子序列,就应该找每一个i为终点的连续最大子序列。
    所以在递推公式的时候,可以直接选出最大的dp[i]。
class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        vector<int> dp(nums.size());
        dp[0] = nums[0];
        int result = dp[0];
        for (int i = 1; i < nums.size(); i++) {
            dp[i] = max(dp[i - 1] + nums[i], nums[i]); // 状态转移公式
            if (dp[i] > result) result = dp[i]; // result 保存dp[i]的最大值
        }
        return result;
    }
};
posted @ 2023-03-26 09:54  百里长川  阅读(55)  评论(0编辑  收藏  举报