代码随想录算法训练营Day51 动态规划

代码随想录算法训练营

代码随想录算法训练营Day51 动态规划| 309.最佳买卖股票时机含冷冻期 714.买卖股票的最佳时机含手续费 总结

309.最佳买卖股票时机含冷冻期

题目链接:309.最佳买卖股票时机含冷冻期
给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格 。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):

  • 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
  • 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
    示例:
  • 输入: [1,2,3,0,2]
  • 输出: 3
  • 解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]

总体思路

在[[代码随想录算法训练营Day50 动态规划]]中有两个状态,持有股票后的最多现金,和不持有股票的最多现金。
动规五部曲,分析如下:

  1. 确定dp数组以及下标的含义
    dp[i][j],第i天状态为j,所剩的最多现金为dp[i][j]
    其实本题很多同学搞的比较懵,是因为出现冷冻期之后,状态其实是比较复杂度,例如今天买入股票、今天卖出股票、今天是冷冻期,都是不能操作股票的。
    具体可以区分出如下四个状态:
  • 状态一:持有股票状态(今天买入股票,或者是之前就买入了股票然后没有操作,一直持有)
  • 不持有股票状态,这里就有两种卖出股票状态
    • 状态二:保持卖出股票的状态(两天前就卖出了股票,度过一天冷冻期。或者是前一天就是卖出股票状态,一直没操作)
    • 状态三:今天卖出股票
  • 状态四:今天为冷冻期状态,但冷冻期状态不可持续,只有一天!

    j的状态为:
  • 0:状态一
  • 1:状态二
  • 2:状态三
  • 3:状态四
    很多题解为什么讲的比较模糊,是因为把这四个状态合并成三个状态了,其实就是把状态二和状态四合并在一起了。
    从代码上来看确实可以合并,但从逻辑上分析合并之后就很难理解了,所以我下面的讲解是按照这四个状态来的,把每一个状态分析清楚。
    如果大家按照代码随想录顺序来刷的话,会发现 买卖股票最佳时机 1,2,3,4 的题目讲解中
  • 动态规划:121.买卖股票的最佳时机
  • 动态规划:122.买卖股票的最佳时机II
  • 动态规划:123.买卖股票的最佳时机III
  • 动态规划:188.买卖股票的最佳时机IV
    「今天卖出股票」我是没有单独列出一个状态的归类为「不持有股票的状态」,而本题为什么要单独列出「今天卖出股票」 一个状态呢?
    因为本题我们有冷冻期,而冷冻期的前一天,只能是 「今天卖出股票」状态,如果是 「不持有股票状态」那么就很模糊,因为不一定是 卖出股票的操作。
    如果没有按照 代码随想录 顺序去刷的录友,可能看这里的讲解 会有点困惑,建议把代码随想录本篇之前股票内容的讲解都看一下,领会一下每天 状态的设置。
    注意这里的每一个状态,例如状态一,是持有股票股票状态并不是说今天一定就买入股票,而是说保持买入股票的状态即:可能是前几天买入的,之后一直没操作,所以保持买入股票的状态
  1. 确定递推公式
    达到买入股票状态(状态一)即:dp[i][0],有两个具体操作:
  • 操作一:前一天就是持有股票状态(状态一),dp[i][0] = dp[i - 1][0]
  • 操作二:今天买入了,有两种情况
    • 前一天是冷冻期(状态四),dp[i - 1][3] - prices[i]
    • 前一天是保持卖出股票的状态(状态二),dp[i - 1][1] - prices[i]
      那么dp[i][0] = max(dp[i - 1][0], dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]); **达到保持卖出股票状态**(状态二)即:dp[i][1]`,有两个具体操作:
  • 操作一:前一天就是状态二
  • 操作二:前一天是冷冻期(状态四)
    dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]); **达到今天就卖出股票状态**(状态三),即:dp[i][2] ,只有一个操作: 昨天一定是持有股票状态(状态一),今天卖出 即:dp[i][2] = dp[i - 1][0] + prices[i];
    达到冷冻期状态(状态四),即:dp[i][3],只有一个操作:
    昨天卖出了股票(状态三)
    `dp[i][3] = dp[i - 1][2];
    综上分析,递推代码如下:
dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3], dp[i - 1][1]) - prices[i]);
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
dp[i][2] = dp[i - 1][0] + prices[i];
dp[i][3] = dp[i - 1][2];
  1. dp数组如何初始化
    这里主要讨论一下第0天如何初始化。
    如果是持有股票状态(状态一)那么:dp[0][0] = -prices[0],一定是当天买入股票。
    保持卖出股票状态(状态二),这里其实从 「状态二」的定义来说 ,很难明确应该初始多少,这种情况我们就看递推公式需要我们给他初始成什么数值。
    如果i为1,第1天买入股票,那么递归公式中需要计算 dp[i - 1][1] - prices[i] ,即 dp[0][1] - prices[1],那么大家感受一下 dp[0][1] (即第0天的状态二)应该初始成多少,只能初始为0。想一想如果初始为其他数值,是我们第1天买入股票后 手里还剩的现金数量是不是就不对了。
    今天卖出了股票(状态三),同上分析,dp[0][2]初始化为0,dp[0][3]也初始为0。
  2. 确定遍历顺序
    从递归公式上可以看出,dp[i]依赖于 dp[i-1],所以是从前向后遍历。
  3. 举例推导dp数组
    以 [1,2,3,0,2] 为例,dp数组如下:

    最后结果是取 状态二,状态三,和状态四的最大值,不少同学会把状态四忘了,状态四是冷冻期,最后一天如果是冷冻期也可能是最大值。
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int n = prices.size();
        if (n == 0) return 0;
        vector<vector<int>> dp(n, vector<int>(4, 0));
        dp[0][0] -= prices[0]; // 持股票
        for (int i = 1; i < n; i++) {
            dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]));
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
            dp[i][2] = dp[i - 1][0] + prices[i];
            dp[i][3] = dp[i - 1][2];
        }
        return max(dp[n - 1][3], max(dp[n - 1][1], dp[n - 1][2]));
    }
};

714.买卖股票的最佳时机含手续费

题目链接:714.买卖股票的最佳时机含手续费
给定一个整数数组 prices,其中第 i 个元素代表了第 i 天的股票价格 ;非负整数 fee 代表了交易股票的手续费用。
你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
返回获得利润的最大值。
注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。
示例 1:

  • 输入: prices = [1, 3, 2, 8, 4, 9], fee = 2
  • 输出: 8
    解释: 能够达到的最大利润:
  • 在此处买入 prices[0] = 1
  • 在此处卖出 prices[3] = 8
  • 在此处买入 prices[4] = 4
  • 在此处卖出 prices[5] = 9
  • 总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8.
    注意:
  • 0 < prices.length <= 50000.
  • 0 < prices[i] < 50000.
  • 0 <= fee < 50000.

总体思路

本题只需要在计算卖出操作的时候减去手续费就可以了,代码几乎是一样的。
唯一差别在于递推公式部分,所以本篇也就不按照动规五部曲详细讲解了,主要讲解一下递推公式部分。
这里重申一下dp数组的含义:
dp[i][0] 表示第i天持有股票所省最多现金。 dp[i][1] 表示第i天不持有股票所得最多现金
如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

  • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
  • 第i天买入股票,所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即:dp[i - 1][1] - prices[i]
    所以:`dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
    在来看看如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来
  • 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:`dp[i - 1][1]
  • 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金,注意这里需要有手续费了即:dp[i - 1][0] + prices[i] - fee 所以:dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
class Solution {
public:
    int maxProfit(vector<int>& prices, int fee) {
        int n = prices.size();
        vector<vector<int>> dp(n, vector<int>(2, 0));
        dp[0][0] -= prices[0]; // 持股票
        for (int i = 1; i < n; i++) {
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
        }
        return max(dp[n - 1][0], dp[n - 1][1]);
    }
};

总结

买股票的最佳时机

股票只能买卖一次,问最大利润

【贪心解法】

取最左最小值,取最右最大值,那么得到的差值就是最大利润,代码如下:

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int low = INT_MAX;
        int result = 0;
        for (int i = 0; i < prices.size(); i++) {
            low = min(low, prices[i]);  // 取最左最小价格
            result = max(result, prices[i] - low); // 直接取最大区间利润
        }
        return result;
    }
};

【动态规划】

  • dp[i][0] 表示第i天持有股票所得现金。
  • dp[i][1]表示第i天不持有股票所得现金。

如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

  • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
  • 第i天买入股票,所得现金就是买入今天的股票后所得现金即:-prices[i] 所以dp[i][0] = max(dp[i - 1][0], -prices[i]);

如果第i天不持有股票即dp[i][1], 也可以由两个状态推出来

  • 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
  • 第i天卖出股票,所得现金就是按照今天股票佳价格卖出后所得现金即:prices[i] + dp[i - 1][0] 所以`dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
posted @ 2023-03-24 11:38  百里长川  阅读(18)  评论(0编辑  收藏  举报