第三次作业


作业①:
要求:指定一个网站,爬取这个网站中的所有的所有图片,例如中国气象网(http://www.weather.com.cn)。分别使用单线程和多线程的方式爬取。
输出信息:
将下载的Url信息在控制台输出,并将下载的图片存储在images子文件中,并给出截图。
1)代码

import requests,os
from bs4 import BeautifulSoup
from time import time
import threading

# 保存图片
def saveImg(url, path):
    print(url)
    r = requests.get(url)
    with open(path, 'wb') as f:
        f.write(r.content)
        f.close()

# 获得网页的所有img标签
def getImgs(url):
    r = requests.get(url)
    r.encoding = "UTF-8"
    soup = BeautifulSoup(r.text,"html.parser")
    imgs = soup.findAll("img")
    return imgs

# 单线程
def oneThread():
    for img in imgs:
        imgurl = img['src']
        pos = imgurl.rindex("/")
        imgpath = path1 + imgurl[pos+1:]
        saveImg(imgurl,imgpath)

# 多线程
def multiThreads():
    threads = []
    for img in imgs:
        imgurl = img['src']
        # 取最后一个/之后的字符串作为文件名
        pos = imgurl.rindex("/")
        imgpath = path2 + imgurl[pos+1:]
        T = threading.Thread(target=saveImg,args=(imgurl,imgpath))
        T.setDaemon(False)
        T.start()
        threads.append(T)

    for t in threads:
        t.join()


url = "http://www.weather.com.cn"
imgs = getImgs(url)

path1 = "C:/image/work3/imgs1/"
path2 = "C:/image/work3/imgs2/"

t1 = time()

# 执行其中一个,注释另外一个
oneThread()
# multiThreads()

t2 = time()
print("共耗时:"+str(t2-t1)+"s")

图片
单线程

多线程

保存后的图片

2)心得体会
第一次使用python多线程,速度还挺快,有催人跑的意思。

作业②:
要求:使用scrapy框架复现作业①。
输出信息:
同作业①
1)代码
mySpider.py

import scrapy
from saveImage.items import ImageItem

class MySpider(scrapy.Spider):
    name = "mySpider"

    def start_requests(self):
        url = "http://www.weather.com.cn"
        yield scrapy.Request(url,self.parse)

    def parse(self,response):
        try:
            data = response.body.decode()
            selector = scrapy.Selector(text=data)
            # 获得所有img标签的src属性
            urls = selector.xpath("//img/@src").extract()
            for url in urls:
                item = ImageItem()
                item['imgurl'] = url
                yield item
        except Exception as err:
            print(err)

pipelines.py

from itemadapter import ItemAdapter
import requests

def saveImg(url, path):
    print(url)
    r = requests.get(url)
    with open(path, 'wb') as f:
        f.write(r.content)
        f.close()

class SaveimagePipeline:
    path = "C:/image/work3/imgs3/"

    def process_item(self, item, spider):
        try:
            imgurl = item['imgurl']
            print(imgurl)
            pos = imgurl.rindex("/")
            imgpath = self.path + (imgurl[pos+1:])
            saveImg(imgurl,imgpath)
        except Exception as e:
            print(e)
        return item

run.py

from scrapy import cmdline

cmdline.execute("scrapy crawl mySpider -s LOG_ENABLED=False".split())

图片

2)心得体会
第一次使用scrapy框架,照着书稍微改改,受益匪浅。
作业③:
要求:使用scrapy框架爬取股票相关信息。
输出信息:

序号 股票代码 股票名称 最新报价 涨跌幅 涨跌额 成交量 成交额 振幅 最高 最低 今开 昨收
1 688093 N世华 28.47 62.22% 10.92 26.13万 7.6亿 22.34 32.0 28.08 30.2 17.55
2 ... ... ... ... ... ... ... ... ... ... ... ...

1)代码
items.py

import scrapy

class StockItem(scrapy.Item):
    # define the fields for your item here like:
    rank = scrapy.Field()
    number = scrapy.Field()
    name = scrapy.Field()
    price = scrapy.Field()
    udRange = scrapy.Field()
    udValue = scrapy.Field()
    tradeNumber = scrapy.Field()
    tradeValue = scrapy.Field()
    Range = scrapy.Field()
    mmax = scrapy.Field()
    mmin = scrapy.Field()
    today = scrapy.Field()
    yesterday = scrapy.Field()

mySpider.py

import scrapy
import json,re
from stock.items import StockItem

class MySpider(scrapy.Spider):
    name = "mySpider"
    # 指定爬取页数,得到start_urls
    page = 1
    start_urls = ['http://10.push2.eastmoney.com/api/qt/clist/get?cb=jQuery112403133057173384801_1603199819974&pn='+str(i+1)+
    '&pz=20&po=1&np=1&ut=bd1d9ddb04089700cf9c27f6f7426281&fltt=2&invt=2&fid=f3&fs=m:0+t:6,m:0+t:13,m:0+t:80,m:1+t:2,m:1+t:23' for i in range(page)]

    def parse(self,response):
        try:
            data = response.body.decode()
            # print(data)
            # 找到第一个[的位置,因为前面有一个{,会对匹配造成影响
            text = data[data.index("["):]
            # 匹配所有{},每支股票信息都包含在一个{}里
            datas = re.findall("{.*?}", text)
            for i in range(len(datas)):
                # 将数据解析成字典
                data = json.loads(datas[i])
                item = StockItem()
                item['rank'] = i+1
                item['number'] = data['f12']
                item['name'] = data['f14']
                item['price'] = data['f2']
                item['udRange'] = data['f3']
                item['udValue'] = data['f4']
                item['tradeNumber'] = data['f5']
                item['tradeValue'] = data['f6']
                item['Range'] = data['f7']
                item['mmax'] = data['f15']
                item['mmin'] = data['f16']
                item['today'] = data['f17']
                item['yesterday'] = data['f18']
                yield item
        except Exception as e:
            print(e)

pipelines.py

from itemadapter import ItemAdapter

class StockPipeline:
    count = 0

    def process_item(self, item, spider):
        # 控制输出表头信息
        if StockPipeline.count == 0:
            StockPipeline.count += 1
            print("{:<3} {:<5} {:<6} {:<4} {:<5} {:<5} {:<8} {:<9} {:<4} {:<5} {:<4} {:<5} {:<5}".format(
                "序号", "股票代码", "股票名称", "最新报价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "最高", "最低", "今开", "昨收"))
        temp = "{:<5} {:<8} {:<10} {:<7} {:<7} {:<7} {:<8} {:<15} {:<7} {:<7} {:<7} {:<7} {:<6}"
        print(temp.format(item['rank'], item['number'], item['name'], item['price'], item['udRange'], item['udValue'],
                          item['tradeNumber'], item['tradeValue'], item['Range'], item['mmax'], item['mmin'], item['today'], item['yesterday']))
        return item

run.py

from scrapy import cmdline

cmdline.execute("scrapy crawl mySpider -s LOG_ENABLED=False".split())

图片

2)心得体会
经过实验2熟悉scrapy框架后,感觉好多了,不过遇到一个问题,请求数据接口时response.body一直为空,后面经过舍友提醒,才知道得将ROBOTSTXT_OBEY参数修改为False。

posted @ 2020-10-20 22:44  家住海边所以浪  阅读(119)  评论(0编辑  收藏  举报