缓存穿透,缓存击穿,缓存雪崩解决方案分析
前言
设计一个缓存系统,不得不要考虑的问题就是:缓存穿透、缓存击穿与失效时的雪崩效应。
缓存穿透
缓存穿透是指查询一个一定不存在的数据,由于缓存是不命中时被动写的,并且出于容错考虑,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到存储层去查询,失去了缓存的意义。在流量大时,可能DB就挂掉了,要是有人利用不存在的key频繁攻击我们的应用,这就是漏洞。
解决方案
有很多种方法可以有效地解决缓存穿透问题,最常见的则是采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会被 这个bitmap拦截掉,从而避免了对底层存储系统的查询压力。另外也有一个更为简单粗暴的方法(我们采用的就是这种),如果一个查询返回的数据为空(不管是数 据不存在,还是系统故障),我们仍然把这个空结果进行缓存,但它的过期时间会很短,最长不超过五分钟。
缓存雪崩
缓存雪崩是指在我们设置缓存时采用了相同的过期时间,导致缓存在某一时刻同时失效,请求全部转发到DB,DB瞬时压力过重雪崩。
解决方案
缓存失效时的雪崩效应对底层系统的冲击非常可怕。大多数系统设计者考虑用加锁或者队列的方式保证缓存的单线 程(进程)写,从而避免失效时大量的并发请求落到底层存储系统上。这里分享一个简单方案就时讲缓存失效时间分散开,比如我们可以在原有的失效时间基础上增加一个随机值,比如1-5分钟随机,这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件。
缓存击穿
对于一些设置了过期时间的key,如果这些key可能会在某些时间点被超高并发地访问,是一种非常“热点”的数据。这个时候,需要考虑一个问题:缓存被“击穿”的问题,这个和缓存雪崩的区别在于这里针对某一key缓存,前者则是很多key。
缓存在某个时间点过期的时候,恰好在这个时间点对这个Key有大量的并发请求过来,这些请求发现缓存过期一般都会从后端DB加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端DB压垮。
解决方案
1.使用互斥锁(mutex key)
业界比较常用的做法,是使用mutex。简单地来说,就是在缓存失效的时候(判断拿出来的值为空),不是立即去load db,而是先使用缓存工具的某些带成功操作返回值的操作(比如Redis的SETNX或者Memcache的ADD)去set一个mutex key,当操作返回成功时,再进行load db的操作并回设缓存;否则,就重试整个get缓存的方法。
SETNX,是「SET if Not eXists」的缩写,也就是只有不存在的时候才设置,可以利用它来实现锁的效果。在redis2.6.1之前版本未实现setnx的过期时间,所以这里给出两种版本代码参考:
1 //2.6.1前单机版本锁 2 String get(String key) { 3 String value = redis.get(key); 4 if (value == null) { 5 if (redis.setnx(key_mutex, "1")) { 6 // 3 min timeout to avoid mutex holder crash 7 redis.expire(key_mutex, 3 * 60) 8 value = db.get(key); 9 redis.set(key, value); 10 redis.delete(key_mutex); 11 } else { 12 //其他线程休息50毫秒后重试 13 Thread.sleep(50); 14 get(key); 15 } 16 } 17 }
最新版本代码:
1 public String get(key) { 2 String value = redis.get(key); 3 if (value == null) { //代表缓存值过期 4 //设置3min的超时,防止del操作失败的时候,下次缓存过期一直不能load db 5 if (redis.setnx(key_mutex, 1, 3 * 60) == 1) { //代表设置成功 6 value = db.get(key); 7 redis.set(key, value, expire_secs); 8 redis.del(key_mutex); 9 } else { //这个时候代表同时候的其他线程已经load db并回设到缓存了,这时候重试获取缓存值即可 10 sleep(50); 11 get(key); //重试 12 } 13 } else { 14 return value; 15 } 16 }
2. "提前"使用互斥锁(mutex key):
在value内部设置1个超时值(timeout1), timeout1比实际的memcache timeout(timeout2)小。当从cache读取到timeout1发现它已经过期时候,马上延长timeout1并重新设置到cache。然后再从数据库加载数据并设置到cache中。伪代码如下:
1 v = memcache.get(key); 2 if (v == null) { 3 if (memcache.add(key_mutex, 3 * 60 * 1000) == true) { 4 value = db.get(key); 5 memcache.set(key, value); 6 memcache.delete(key_mutex); 7 } else { 8 sleep(50); 9 retry(); 10 } 11 } else { 12 if (v.timeout <= now()) { 13 if (memcache.add(key_mutex, 3 * 60 * 1000) == true) { 14 // extend the timeout for other threads 15 v.timeout += 3 * 60 * 1000; 16 memcache.set(key, v, KEY_TIMEOUT * 2); 17 18 // load the latest value from db 19 v = db.get(key); 20 v.timeout = KEY_TIMEOUT; 21 memcache.set(key, value, KEY_TIMEOUT * 2); 22 memcache.delete(key_mutex); 23 } else { 24 sleep(50); 25 retry(); 26 } 27 } 28 }
3. "永远不过期":
这里的“永远不过期”包含两层意思:
(1) 从redis上看,确实没有设置过期时间,这就保证了,不会出现热点key过期问题,也就是“物理”不过期。
(2) 从功能上看,如果不过期,那不就成静态的了吗?所以我们把过期时间存在key对应的value里,如果发现要过期了,通过一个后台的异步线程进行缓存的构建,也就是“逻辑”过期
从实战看,这种方法对于性能非常友好,唯一不足的就是构建缓存时候,其余线程(非构建缓存的线程)可能访问的是老数据,但是对于一般的互联网功能来说这个还是可以忍受。
1 String get(final String key) { 2 V v = redis.get(key); 3 String value = v.getValue(); 4 long timeout = v.getTimeout(); 5 if (v.timeout <= System.currentTimeMillis()) { 6 // 异步更新后台异常执行 7 threadPool.execute(new Runnable() { 8 public void run() { 9 String keyMutex = "mutex:" + key; 10 if (redis.setnx(keyMutex, "1")) { 11 // 3 min timeout to avoid mutex holder crash 12 redis.expire(keyMutex, 3 * 60); 13 String dbValue = db.get(key); 14 redis.set(key, dbValue); 15 redis.delete(keyMutex); 16 } 17 } 18 }); 19 } 20 return value; 21 }
4. 资源保护:
采用netflix的hystrix,可以做资源的隔离保护主线程池,如果把这个应用到缓存的构建也未尝不可。
四种解决方案:没有最佳只有最合适
总结
针对业务系统,永远都是具体情况具体分析,没有最好,只有最合适。
最后,对于缓存系统常见的缓存满了和数据丢失问题,需要根据具体业务分析,通常我们采用LRU策略处理溢出,Redis的RDB和AOF持久化策略来保证一定情况下的数据安全。