/*自定义导航栏*/

09 2018 档案

摘要:导读:k-均值算法(英文:k-means clustering),属于比较常用的算法之一,文本首先介绍聚类的理论知识包括什么是聚类、聚类的应用、聚类思想、聚类优缺点等等;然后通过k-均值聚类案例实现及其可视化有一个直观的感受,针对算法模型进行分析和结果优化提出了二分k-means算法。最后我们调用机器学习库函数,很短的代码完成聚类算法。(本文原创,转载必须注明出处: 决策树模型算法研究与案例分析) 阅读全文
posted @ 2018-09-13 09:13 伏草惟存 阅读(30231) 评论(0) 推荐(7) 编辑
摘要:导读:逻辑回归(Logistic regression)即逻辑模型,属于常见的一种分类算法。本文将从理论介绍开始,搞清楚什么是逻辑回归、回归系数、算法思想、工作原理及其优缺点等。进一步通过两个实际案例深化理解逻辑回归,以及在工程应用进行实现。(本文原创,转载必须注明出处: 决策树模型算法研究与案例分析) 阅读全文
posted @ 2018-09-06 16:32 伏草惟存 阅读(4883) 评论(0) 推荐(1) 编辑
摘要:朴素贝叶斯模型是机器学习常用的模型算法之一,其在文本分类方面简单易行,且取得不错的分类效果。所以很受欢迎,对于朴素贝叶斯的学习,本文首先介绍理论知识即朴素贝叶斯相关概念和公式推导,为了加深理解,采用一个维基百科上面性别分类例子进行形式化描述。然后通过编程实现朴素贝叶斯分类算法,并在屏蔽社区言论、垃圾邮件、个人广告中获取区域倾向等几个方面进行应用。由于篇幅较长,采用理论理解、案例实现、sklearn优化三个部分进行学习。(本文原创,转载必须注明出处: 朴素贝叶斯模型算法研究与实例分析) 阅读全文
posted @ 2018-09-04 15:47 伏草惟存 阅读(4614) 评论(0) 推荐(1) 编辑
摘要:朴素贝叶斯模型是机器学习常用的模型算法之一,其在文本分类方面简单易行,且取得不错的分类效果。所以很受欢迎,对于朴素贝叶斯的学习,本文首先介绍理论知识即朴素贝叶斯相关概念和公式推导,为了加深理解,采用一个维基百科上面性别分类例子进行形式化描述。然后通过编程实现朴素贝叶斯分类算法,并在屏蔽社区言论、垃圾邮件、个人广告中获取区域倾向等几个方面进行应用,由于篇幅较长,采用理论理解、案例实现、sklearn优化三个部分进行学习。(本文原创,转载必须注明出处:朴素贝叶斯模型算法研究与实例分析) 阅读全文
posted @ 2018-09-04 09:05 伏草惟存 阅读(2840) 评论(0) 推荐(3) 编辑
摘要:朴素贝叶斯模型是机器学习常用的模型算法之一,其在文本分类方面简单易行,且取得不错的分类效果。所以很受欢迎,对于朴素贝叶斯的学习,本文首先介绍理论知识即朴素贝叶斯相关概念和公式推导,为了加深理解,采用一个维基百科上面性别分类例子进行形式化描述。然后通过编程实现朴素贝叶斯分类算法,并在屏蔽社区言论、垃圾邮件、个人广告中获取区域倾向等几个方面进行应用,包括创建数据集、数据预处理、词集模型和词袋模型、朴素贝叶斯模型训练和优化等。然后结合复旦大学新闻语料进行朴素贝叶斯的应用。最后,大家熟悉其原理和实现之后,采用机器学习sklearn包进行实现和优化。由于篇幅较长,采用理论理解、案例实现、sklearn优化三个部分进行学习。(本文原创,转载必须注明出处:朴素贝叶斯模型算法研究与实例分析) 阅读全文
posted @ 2018-09-03 17:54 伏草惟存 阅读(4673) 评论(0) 推荐(2) 编辑

点击右上角即可分享
微信分享提示