第二届数据安全大赛“数信杯”数据安全大赛 WP

 

1.pyc

使用pyc在线反编译得到python源码:

 #!/usr/bin/env python
 # visit https://tool.lu/pyc/ for more information
 # Version: Python 3.8
 
 import random
 
 
 def encrypt_file(file_path):
     random.seed(114514)
 
 
 # WARNING: Decompyle incomplete
 
 file_path = "./flag"
 encrypt_file(file_path)

 

然后使用AI分析可得到它对应的解密脚本

 import random
 import os
 
 def decrypt_data(encrypted_data):
     random.seed(114514)
     decrypted_data = bytearray()
     for byte in encrypted_data:
         key = random.randint(0, 128)
         decrypted_data.append(byte ^ key)
     return decrypted_data
 def read_file(file_path, mode='rb'):
     with open(file_path, mode) as file:
         return file.read()
 def write_file(file_path, data, mode='wb'):
     with open(file_path, mode) as file:
         file.write(data)
 def decrypt_file(encrypted_file_path, output_file_path):
     encrypted_data = read_file(encrypted_file_path)
     decrypted_data = decrypt_data(encrypted_data)
     write_file(output_file_path, decrypted_data)
 if __name__=='__main__':
     encrypted_file_path = 'flag.enc'
     output_file_path = 'flag_decrypted.txt'
     decrypt_file(encrypted_file_path, output_file_path)
     #flag{U_R_g00d_at_do1n_pyc}

2.MWatch

提示:数据安全研究员在分析智能设备实时采集的数据时,检测到有一台设备使用者曾出现过某数值过高的情况,请你协助分析该数值最高是多少。flag{md5(数据采集设备名称数据接收设备名称数值)}

多次出现Heart Rate,结合题目描述应该就是找这个,只查看Heart Rate相关

image-20240428205017240

image-20240428205017240

flag{md5(Mi Smart Band 5_Redmi K40_128)}

flag{453d8feda5adb6e7b4d54f71a9ce9e14}

3.BabyRSA

提示:某员工有一个生成素数的初始值,这个算法他跑了很长时间。程序不小心终端,还不小心删了了初始值,还能恢复明文吗

源码:

 #task.py
 #!/usr/bin/env python3
 # -*- coding: utf-8 -*-
 
 from secret import flag,init
 from Crypto.Util.number import *
 from sage.all import *
 from gmpy2 import iroot
 m = bytes_to_long(flag.encode())
 r = getPrime(128)
 
 p = init
 # for i in range(r-1):
 #     p += next_prime(init)
 
 # assert iroot(p,3)[1] == 1
 q = getPrime(12)
 # N = p*q*r
 N = r**4*q
 e = getPrime(17)
 c = pow(m,e,N)
 print(f"r = {r}")
 print(f"e = {e}")
 print(f"c = {c}")
 
 # r = 287040188443069778047400125757341514899
 # e = 96001
 # c = 7385580281056276781497978538020227181009675544528771975750499295104237912389096731847571930273208146186326124578668216163319969575131936068848815308298035625

爆破12比特的素数得到q,然后解密即可

 from Crypto.Util.number import long_to_bytes, inverse
 
 r = 287040188443069778047400125757341514899
 e = 96001
 c = 7385580281056276781497978538020227181009675544528771975750499295104237912389096731847571930273208146186326124578668216163319969575131936068848815308298035625
 
 # Assuming the modulus for the exponentiation should indeed be r**4
 n = r**4
 
 # Compute the modular inverse of e mod φ(n), where φ(n) could be a function of r, like (r-1)*(r**3)
 # We need the correct value of φ(n) for the RSA decryption formula m = c^d mod n, where d = e^(-1) mod φ(n)
 # Here, assuming φ(n) = r^4 - r^3 as a simplification, you might need to adjust this based on actual RSA setup
 phi_n = r**4 - r**3
 d = inverse(e, phi_n)
 
 # Decrypt message
 m = pow(c, d, n)
 
 # Convert number to bytes
 message = long_to_bytes(m)
 print(message)
 #flag{3b0ce326141ea4f6b5bf2f37efbd1b42}

4.Backpack

背包加密,用BKZ算法可以求解到一组基

 #!/usr/bin/env python3
 # -*- coding: utf-8 -*-
 
 from sage.all import *
 from secret import flag
 from Crypto.Util.number import *
 from math import log2
 
 class Knapsack:
     def __init__(self,n,m):
         self.M = []
         self.n = n
         self.m = self.pre(m)
         self.A = 0
         self.B = 0
     def pre(self,m):
         tmp_m = bin(m)[2:]
         t = []
         for tmp in tmp_m:
             t.append(int(tmp))
         return t
     def get_M(self):
         seq = [randint(2**34,2**35) for _ in range(self.n)]
         self.M = seq
     def calc_density(self):
         t = log2(max(self.M))
         d = self.n/t
         print(d)
 
     def enc(self):
         self.get_M()
         self.calc_density()
         C = 0
         for t in range(len(self.m)):
             C += self.m[t] * self.M[t]
         print(f"C = {C}")
         print(f"M = {self.M}")
 if __name__=="__main__":
     m = bytes_to_long(flag.encode())
     n = m.bit_length()
     k = Knapsack(n,m)
     k.enc()
 
 # C = 231282844744
 # M = [27811518167, 19889199464, 19122558731, 19966624823, 25670001067, 30690729665, 23936341812, 31011714749, 30524482330, 21737374993, 17530717152, 19140841231, 33846825616, 17334386491, 28867755886, 29354544582, 21758322019, 27261411361, 31465376167, 26145493792, 27075307455, 33514052206, 25397635665, 21970496142, 30801229475, 22405695620, 18486900933, 27071880304, 17919853256, 18072328152, 21108080920]
 

sagemath中执行:

from Crypto.Util.number import long_to_bytes
 
 C = 231282844744
 M = [27811518167, 19889199464, 19122558731, 19966624823, 25670001067, 30690729665, 
      23936341812, 31011714749, 30524482330, 21737374993, 17530717152, 19140841231, 
      33846825616, 17334386491, 28867755886, 29354544582, 21758322019, 27261411361, 
      31465376167, 26145493792, 27075307455, 33514052206, 25397635665, 21970496142, 
      30801229475, 22405695620, 18486900933, 27071880304, 17919853256, 18072328152, 
      21108080920]
 
 L = block_matrix([[1, matrix(ZZ, M).T], [0, C]]).LLL()
 
 for row in L:
     if row[-1] == 0 and len(set(row[:-1])) == 1:
         # Assuming all elements in the row, except the last one, are the same
         ans = [abs(i) for i in row[:-1]]
         ans = int(''.join(map(str, ans)), 2)
         print(long_to_bytes(ans))

5.定向数据采集

 
import openpyxl
 import requests
 import time
 from urllib.parse import urlencode
 burp0_url = "http://121.40.65.125:23328/submit"
 
 def separate_name_and_id(input_file, output_file):
     wb = openpyxl.load_workbook(input_file)
     ws = wb.active
 
     for row in ws.iter_rows(min_row=1, max_col=1, max_row=ws.max_row, values_only=True):
         if row[0]:
             name, id_number = row[0].split('----') #提取名字和身份证
             print(name, id_number)
             age = 2024-int(id_number[6:10])
             if(int(id_number[10:12])>4):
                 age -= 1
             sexx=u""
             burp0_json={"address": "asd", "age": str(age), "ethnicity": "as", "experience": "1", "idcard": id_number, "name": "a", "phonenumber": "12312331233", "position": "as", "sex": sexx}
             sexx2 = u""
             burp0_json1={"address": "asd", "age": str(age), "ethnicity": "as", "experience": "1", "idcard": id_number, "name": "a", "phonenumber": "12312331233", "position": "as", "sex": sexx2}
             try:
                 r0=requests.post(burp0_url, json=burp0_json)
                 r1=requests.post(burp0_url, json=burp0_json1)
                 print(r0.request.body)
                 print(r0.text,r1.text)
                 #time.sleep(0.5)
             except requests.exceptions:
                 print("err")
             #time.sleep(2)
             #ws.append([name.strip(), id_number.strip()])
 
     #wb.save(output_file)
     wb.close()
 
 if __name__ == "__main__":
     input_file = "data1.xlsx"
     output_file = "separated_data.xlsx" #没啥用,废弃掉了
     separate_name_and_id(input_file, output_file)

6.weather

审下bundle.js

image-20240428213212351

image-20240428213230335

带参数去访问

Image

7.mysql 清理

提示:

根据要求,现在要从数据库中彻底删除一些用户的数据,请连接提供的mysql容器,删除ctf所有表中,用户id为5142、2123、1169、8623这四个用户的数据。要求彻底清理这些用户,不能在服务器[中找到残留,同时不能改动其他用户数据。当操作成功后,系统会在ctf.flag表中录入flag数据。(mysql ctf用户密码 pswd@123)

 DELETE FROM ShoppingCart WHERE user_id in ("5142","2123","1169","8623");
 DELETE FROM TransactionHistory WHERE user_id in ("5142","2123","1169","8623");
 DELETE FROM UserLog WHERE user_id in ("5142","2123","1169","8623");
 DELETE FROM Wallet WHERE user_id in ("5142","2123","1169","8623");
 DELETE FROM User WHERE id in ("5142","2123","1169","8623");

再重建一下表,清掉删除之后的残留数据

 
alter table User engine = innodb;
alter table UserLog engine = innodb;
alter table TransactionHistory engine = innodb;
alter table ShoppingCart engine = innodb;
alter table Orders engine = innodb;

image-20240428213639377

 

8.幻方

三阶幻方只有八种结果,认准一个多试几次就行

 
import hashlib
 import random
 import string
 
 # Define the character set as alphanumeric characters
 charset = string.ascii_letters + string.digits
 
 while True:
     # Generate a random 4-character string from the charset
     rand_str = ''.join(random.choice(charset) for _ in range(4)) + 'CyhQp8lsgzYjTNUD'
     
     # Calculate the SHA-256 hash of the string
     hash_output = hashlib.sha256(rand_str.encode()).hexdigest()
     
     # Check if the hash matches the target hash
     if hash_output == '11f8af166cc28e24b4646cc300436f4d4bf8e11b2327379331a3eca2d5fc7c0c':
         print(rand_str[:4])  # Print the first 4 characters if a match is found
         break
 '''
 [2, 7, 6, 9, 5, 1, 4, 3, 8]
 [2, 9, 4, 7, 5, 3, 6, 1, 8]
 [4, 3, 8, 9, 5, 1, 2, 7, 6]
 [4, 9, 2, 3, 5, 7, 8, 1, 6]
 [6, 1, 8, 7, 5, 3, 2, 9, 4]
 [6, 7, 2, 1, 5, 9, 8, 3, 4]
 [8, 1, 6, 3, 5, 7, 4, 9, 2]
 [8, 3, 4, 1, 5, 9, 6, 7, 2]
 4 3 8
 9 5 1
 2 7 6
 '''

image-20240428214506459

9.Prime Conundrum

知道了delta可以对leak的那条式子进行二元copper求解s,t,通过hint和s求解p, 算私钥解密即可

 
import itertools
 from tqdm import tqdm
 def small_roots(f, bounds, m=1, d=None):
     if not d:
         d = f.degree()
     R = f.base_ring()
     N = R.cardinality()
     f /= f.coefficients().pop(0)
     f = f.change_ring(ZZ)
     G = Sequence([], f.parent())
     for i in range(m + 1):
         base = N ^ (m - i) * f ^ i
         for shifts in itertools.product(range(d), repeat=f.nvariables()):
             g = base * prod(map(power, f.variables(), shifts))
             G.append(g)
     B, monomials = G.coefficient_matrix()
     monomials = vector(monomials)
     factors = [monomial(*bounds) for monomial in monomials]
     for i, factor in enumerate(factors):
         B.rescale_col(i, factor)
     B = B.dense_matrix().LLL()
     B = B.change_ring(QQ)
     for i, factor in enumerate(factors):
         B.rescale_col(i, 1 / factor)
     H = Sequence([], f.parent().change_ring(QQ))
     for h in filter(None, B * monomials):
         H.append(h)
         I = H.ideal()
         if I.dimension() == -1:
             H.pop()
         elif I.dimension() == 0:
             roots = []
             for root in I.variety(ring=ZZ):
                 root = tuple(R(root[var]) for var in f.variables())
                 roots.append(root)
             return roots
     return []
 P = 91307300383014465303389363075431698588933838431961163766796972428733255940234665671679789435258337578396879726483195947952476118985507696067550566875810703327064257916213956673893327976728584687137639337961422903593701591152074826447530099276756806166361533554689114264018344629905535188048343259754284652017
 Q = 149089411480331249267443825847904508235946280550542428853480950085018092182435890098430254117786823782088885695848943795846175490059759543848516828825072642481794902650586147465149175976488985613001468444893241645390860978312924241181340390543064512602477917112031391367608345501790785857442379515898677467337
 n = 97339579366356507946846401691835843338581994635020856947574389213640653953117584127557153363761256108433474475102197685296591968229050609482457622390855692102761025647645801250282912327521623082583744902369819132264725498938021235699466656447009532567358416017236962637028458839659218745744825556065623673913
 N = 72077628115206161977315177371814064093288033362281459918751639032623658967593542855291047617938064177930014574391486973767462937337649946356572406647109942552336519343063401327708412361664750917582404375485334706345485264831286788789648126355202140531434534406410829696252616051882952860015344370516517084357909896281965899571934196572691
 leak = 45439323369250400352006541741265096780554398472451037280607564706700682873365442581062404781075514235328183754475227917775810587457541607767765455164339314322631781126065808432845447798024685402323868389611285038950397054020330610558058133599416135943335731904873776868614834960217751934513462319743149481906
 c = 31456530156035981140909630437789986968079386074106871160743980387785993275753486380185420818239283975922682050323918081691381897642776414263991442096807392948925867761878299044300335666219533277719472330029607869735373712681522022301659090108633692457216985013550482473362675907949633024047291607542103649091410575340884845190483766424507
 hint = 13318665442465244206832303588726230530847297247590371628366697082014350966833522479782161994817212671730145702818662148370306660550486536176566012104254910
 z = 740476059013240018009340328107
 PR.<x,y>=PolynomialRing(Zmod(n))
 f=P*x + Q*y + z -leak
 ans=small_roots(f,bounds=(2^70,2^70),m=3,d=3)
 ans
 s = 30656796668419630391
 t = 35875762848049841267
 p = hint + s
 q  = n // p 
 assert p*q == n
 e = 65537
 from Crypto.Util.number import *
 d = inverse(e,(p-1)*(q-1)*(z-1))
 m = pow(c,d,n)
 long_to_bytes(int(m))

10.fun

遍历爆破满足条件的x,y然后解密即可

 # from z3 import *
 A = []
 for x in range(101):
     for y in range(101):
         z  = x^y 
         if (x+y)*z == x**2 + y**2:
             if x*y != z:
                 if x != y:
                     A.append([x,y,z])
 from Crypto.Cipher import AES
 import random
 # 与加密时相同的种子,确保生成相同的密钥
 for i in A:
     x,y,z = i
     random.seed(x+y+z)
     key = random.randbytes(16)
     # print(key)
     # 读取加密的数据
     PATH = r"encrypted_flag.bin"
     with open(PATH, "rb") as file_in:
         nonce = file_in.read(16)  # Nonce 的长度为 16 字节
         tag = file_in.read(16)    # Tag 通常与块大小相同,对于 AES 为 16 字节
         ciphertext = file_in.read()  # 读取剩余部分作为密文
     # 解密过程
     # print(nonce)
     # print(tag)
     # print(ciphertext)
     cipher = AES.new(key, AES.MODE_EAX,nonce=nonce)
     try:
         decrypted_text = cipher.decrypt_and_verify(ciphertext, tag)
         print("The flag is:", decrypted_text)
     except:
         pass

11.好大的公钥

boneh and durfee 一把梭

 from libnum import *
 N = 73662176635930217145588251109582598744318418885493494845859692592990304301546996154904097420724904838772056137908521735803973827790665774255932629529776216900362889972771913683024723128622502292694632281143536586986352764727899291750703185204118126673717387089701233154888606074285445820360105604776003690487 
 e = 26083019178473123328452230832076345302834454225396475868531519193551971982955975631443131705619185405190763284436613436828597887376946206551305947183212830810924956452635880343496593901027606468731840531964306285933726727512533644720818081124507069662781291949841231431546394148749720394411454774153995026037 
 c = 46149785989975097887441076951612740430034092652052333486778189200068487460813449057674051203125773261695615434443270333980225346411838188124458064365680435783802887397970067324393852247219619820813993601444322710186223021625645961186730735728928546458428244830359782270698452792224875596683123815246426241726 
 """
 Setting debug to true will display more informations
 about the lattice, the bounds, the vectors...
 """
 debug = False
 """
 Setting strict to true will stop the algorithm (and
 return (-1, -1)) if we don't have a correct
 upperbound on the determinant. Note that this
 doesn't necesseraly mean that no solutions
 will be found since the theoretical upperbound is
 usualy far away from actual results. That is why
 you should probably use `strict = False`
 """
 strict = False
 """
 This is experimental, but has provided remarkable results
 so far. It tries to reduce the lattice as much as it can
 while keeping its efficiency. I see no reason not to use
 this option, but if things don't work, you should try
 disabling it
 """
 helpful_only = True
 dimension_min = 7  # stop removing if lattice reaches that dimension
 ############################################
 # Functions
 ##########################################
 # display stats on helpful vectors
 def helpful_vectors(BB, modulus):
     nothelpful = 0
     for ii in range(BB.dimensions()[0]):
         if BB[ii, ii] >= modulus:
             nothelpful += 1
     print(nothelpful, "/", BB.dimensions()[0], " vectors are not helpful")
 
 # display matrix picture with 0 and X
 def matrix_overview(BB, bound):
     for ii in range(BB.dimensions()[0]):
         a = ('%02d ' % ii)
         for jj in range(BB.dimensions()[1]):
             a += '0' if BB[ii, jj] == 0 else 'X'
             if BB.dimensions()[0] < 60:
                 a += ' '
         if BB[ii, ii] >= bound:
             a += '~'
         print(a)
 # tries to remove unhelpful vectors
 # we start at current = n-1 (last vector)
 def remove_unhelpful(BB, monomials, bound, current):
     # end of our recursive function
     if current == -1 or BB.dimensions()[0] <= dimension_min:
         return BB
     # we start by checking from the end
     for ii in range(current, -1, -1):
         # if it is unhelpful:
         if BB[ii, ii] >= bound:
             affected_vectors = 0
             affected_vector_index = 0
             # let's check if it affects other vectors
             for jj in range(ii + 1, BB.dimensions()[0]):
                 # if another vector is affected:
                 # we increase the count
                 if BB[jj, ii] != 0:
                     affected_vectors += 1
                     affected_vector_index = jj
             # level:0
             # if no other vectors end up affected
             # we remove it
             if affected_vectors == 0:
                 # print("* removing unhelpful vector", ii)
                 BB = BB.delete_columns([ii])
                 BB = BB.delete_rows([ii])
                 monomials.pop(ii)
                 BB = remove_unhelpful(BB, monomials, bound, ii - 1)
                 return BB
             # level:1
             # if just one was affected we check
             # if it is affecting someone else
             elif affected_vectors == 1:
                 affected_deeper = True
                 for kk in range(affected_vector_index + 1, BB.dimensions()[0]):
                     # if it is affecting even one vector
                     # we give up on this one
                     if BB[kk, affected_vector_index] != 0:
                         affected_deeper = False
                 # remove both it if no other vector was affected and
                 # this helpful vector is not helpful enough
                 # compared to our unhelpful one
                 if affected_deeper and abs(bound - BB[affected_vector_index, affected_vector_index]) < abs(
                         bound - BB[ii, ii]):
                     # print("* removing unhelpful vectors", ii, "and", affected_vector_index)
                     BB = BB.delete_columns([affected_vector_index, ii])
                     BB = BB.delete_rows([affected_vector_index, ii])
                     monomials.pop(affected_vector_index)
                     monomials.pop(ii)
                     BB = remove_unhelpful(BB, monomials, bound, ii - 1)
                     return BB
     # nothing happened
     return BB
 """ 
 Returns:
 * 0,0   if it fails
 * -1,-1 if `strict=true`, and determinant doesn't bound
 * x0,y0 the solutions of `pol`
 """
 def boneh_durfee(pol, modulus, mm, tt, XX, YY):
     """
     Boneh and Durfee revisited by Herrmann and May
     finds a solution if:
     * d < N^delta
     * |x| < e^delta
     * |y| < e^0.5
     whenever delta < 1 - sqrt(2)/2 ~ 0.292
     """
     # substitution (Herrman and May)
     PR.<u,x,y> = PolynomialRing(ZZ)
     Q = PR.quotient(x * y + 1 - u)  # u = xy + 1
     polZ = Q(pol).lift()
     UU = XX * YY + 1
     # x-shifts
     gg = []
     for kk in range(mm + 1):
         for ii in range(mm - kk + 1):
             xshift = x ^ ii * modulus ^ (mm - kk) * polZ(u, x, y) ^ kk
             gg.append(xshift)
     gg.sort()
     # x-shifts list of monomials
     monomials = []
     for polynomial in gg:
         for monomial in polynomial.monomials():
             if monomial not in monomials:
                 monomials.append(monomial)
     monomials.sort()
     # y-shifts (selected by Herrman and May)
     for jj in range(1, tt + 1):
         for kk in range(floor(mm / tt) * jj, mm + 1):
             yshift = y ^ jj * polZ(u, x, y) ^ kk * modulus ^ (mm - kk)
             yshift = Q(yshift).lift()
             gg.append(yshift)  # substitution
     # y-shifts list of monomials
     for jj in range(1, tt + 1):
         for kk in range(floor(mm / tt) * jj, mm + 1):
             monomials.append(u ^ kk * y ^ jj)
     # construct lattice B
     nn = len(monomials)
     BB = Matrix(ZZ, nn)
     for ii in range(nn):
         BB[ii, 0] = gg[ii](0, 0, 0)
         for jj in range(1, ii + 1):
             if monomials[jj] in gg[ii].monomials():
                 BB[ii, jj] = gg[ii].monomial_coefficient(monomials[jj]) * monomials[jj](UU, XX, YY)
     # Prototype to reduce the lattice
     if helpful_only:
         # automatically remove
         BB = remove_unhelpful(BB, monomials, modulus ^ mm, nn - 1)
         # reset dimension
         nn = BB.dimensions()[0]
         if nn == 0:
             print("failure")
             return 0, 0
     # check if vectors are helpful
     if debug:
         helpful_vectors(BB, modulus ^ mm)
     # check if determinant is correctly bounded
     det = BB.det()
     bound = modulus ^ (mm * nn)
     if det >= bound:
         # print("We do not have det < bound. Solutions might not be found.")
         # print("Try with highers m and t.")
         if debug:
             diff = (log(det) - log(bound)) / log(2)
             # print("size det(L) - size e^(m*n) = ", floor(diff))
         if strict:
             return -1, -1
     else:
         print("det(L) < e^(m*n) (good! If a solution exists < N^delta, it will be found)")
     # display the lattice basis
     if debug:
         matrix_overview(BB, modulus ^ mm)
     # LLL
     if debug:
         print("optimizing basis of the lattice via LLL, this can take a long time")
     BB = BB.LLL()
     if debug:
         print("LLL is done!")
     # transform vector i & j -> polynomials 1 & 2
     if debug:
         print("looking for independent vectors in the lattice")
     found_polynomials = False
     for pol1_idx in range(nn - 1):
         for pol2_idx in range(pol1_idx + 1, nn):
             # for i and j, create the two polynomials
             PR.<w,z> = PolynomialRing(ZZ)
             pol1 = pol2 = 0
             for jj in range(nn):
                 pol1 += monomials[jj](w * z + 1, w, z) * BB[pol1_idx, jj] / monomials[jj](UU, XX, YY)
                 pol2 += monomials[jj](w * z + 1, w, z) * BB[pol2_idx, jj] / monomials[jj](UU, XX, YY)
             # resultant
             PR.<q> = PolynomialRing(ZZ)
             rr = pol1.resultant(pol2)
             # are these good polynomials?
             if rr.is_zero() or rr.monomials() == [1]:
                 continue
             else:
                 # print("found them, using vectors", pol1_idx, "and", pol2_idx)
                 found_polynomials = True
                 break
         if found_polynomials:
             break
     if not found_polynomials:
         # print("no independant vectors could be found. This should very rarely happen...")
         return 0, 0
     rr = rr(q, q)
     # solutions
     soly = rr.roots()
     if len(soly) == 0:
         # print("Your prediction (delta) is too small")
         return 0, 0
     soly = soly[0][0]
     ss = pol1(q, soly)
     solx = ss.roots()[0][0]
     #
     return solx, soly
 delta = .271  # this means that d < N^delta
 m = 8  # size of the lattice (bigger the better/slower)
 t = int((1 - 2 * delta) * m)  # optimization from Herrmann and May
 X = 2 * floor(N ^ delta)  # this _might_ be too much
 Y = floor(N ^ (1 / 2))  # correct if p, q are ~ same size
 P.<x,y> = PolynomialRing(ZZ)
 A = int((N + 1) / 2)
 pol = 1 + x * (A + y)
 solx, soly = boneh_durfee(pol, e, m, t, X, Y)
 d = int(pol(solx, soly) / e)
 print(d)
 m = power_mod(c, d, N)
 print(n2s(int(m)))

12.Notebook

复制文本到浏览器检索,发现有200C,所以直接零宽字符,用Cyberchef转换为Escape Unicode,发现大量出现了以下零宽字符

u202C\u200B\u2062\uFEFF最后找到了

https://lazzzaro.github.io/2020/05/24/misc-%E9%9B%B6%E5%AE%BD%E5%BA%A6%E5%AD%97%E7%AC%A6%E9%9A%90%E5%86%99/index.html

发现330k有自定义码表的功能

http://330k.github.io/misc_tools/unicode_steganography.html

最后发现MACOSX_里面里面其实hint了330k.github.io。

https://www.mzy0.com/ctftools/zerowidth1/

也可以处理。

选中需要的编码之后即可解析,解析后如下:

K|2+YG3-hfl|&_U8检索一整段之后没有什么信息,放入随波逐流里面发现该编码可以被base92解码解码后可知泄露源。

image-20240414192310831

wangdalei0527然后找了半天flag提交格式结果发现只用提交wangdalei就行,0527猜测是手机尾号

flag{wangdalei}

13.UnsetData

发现是一个类似于内存镜像的东西,使用R-studio进行恢复找到了data.jpg,发现左上角有东西,有隐隐约约的字符,使用盲水印发现flag,然后调十几次参数找到相对清晰的图片之后抄10分钟flag即可得

img

 

image-20240414184342639

flag{0531d7d9-65fb-49ae-87c1-639fff783338}

14.RWZIP

发现该压缩包数据校验不通过,说明包体被修改过,修改前发现压缩加密格式为ZipCrypto没找到其他信息,使用passware toolkit爆破,可得压缩包密码为114514,再观察下包体发现他被ZipCrypto加密后却不需要输入密码,将加密为从08改为09正常输入密码即可解压解压后发现采用了特殊的字符集,目测是将左右进行翻转替换后可得flag

 ʇlɒϱ{85ɘdɒʇ8245754b9ɘd09045087ʇɘ28392}
 flag{85ebaf8245754d9eb09045087fe28392}

15.USBHacker

wireshark打开后USBHID长度为16,知道该流量为键盘流量

过滤Source 1.5.1之后,导出json,

 import json
 datainput = open('USB3.json', "r", encoding="utf-8")
 output = open("USB3.txt", "w",encoding="utf-8")
 d = json.load(datainput)
 for i in d:
     print(i["_source"]["layers"]["usbhid.data"])
     output.write(i["_source"]["layers"]["usbhid.data"]+'\n')

然后再进行解析

 
normalKeys = {
     "04":"a", "05":"b", "06":"c", "07":"d", "08":"e",
     "09":"f", "0a":"g", "0b":"h", "0c":"i", "0d":"j",
      "0e":"k", "0f":"l", "10":"m", "11":"n", "12":"o",
       "13":"p", "14":"q", "15":"r", "16":"s", "17":"t",
        "18":"u", "19":"v", "1a":"w", "1b":"x", "1c":"y",
         "1d":"z","1e":"1", "1f":"2", "20":"3", "21":"4",
          "22":"5", "23":"6","24":"7","25":"8","26":"9",
          "27":"0","28":"<RET>","29":"<ESC>","2a":"<DEL>", "2b":"\t",
          "2c":"<SPACE>","2d":"-","2e":"=","2f":"[","30":"]","31":"\\",
          "32":"<NON>","33":";","34":"'","35":"<GA>","36":",","37":".",
          "38":"/","39":"<CAP>","3a":"<F1>","3b":"<F2>", "3c":"<F3>","3d":"<F4>",
          "3e":"<F5>","3f":"<F6>","40":"<F7>","41":"<F8>","42":"<F9>","43":"<F10>",
          "44":"<F11>","45":"<F12>"}
 shiftKeys = {
     "04":"A", "05":"B", "06":"C", "07":"D", "08":"E",
      "09":"F", "0a":"G", "0b":"H", "0c":"I", "0d":"J",
       "0e":"K", "0f":"L", "10":"M", "11":"N", "12":"O",
        "13":"P", "14":"Q", "15":"R", "16":"S", "17":"T",
         "18":"U", "19":"V", "1a":"W", "1b":"X", "1c":"Y",
          "1d":"Z","1e":"!", "1f":"@", "20":"#", "21":"$",
           "22":"%", "23":"^","24":"&","25":"*","26":"(","27":")",
           "28":"<RET>","29":"<ESC>","2a":"<DEL>", "2b":"\t","2c":"<SPACE>",
           "2d":"_","2e":"+","2f":"{","30":"}","31":"|","32":"<NON>","33":"\"",
           "34":":","35":"<GA>","36":"<","37":">","38":"?","39":"<CAP>","3a":"<F1>",
           "3b":"<F2>", "3c":"<F3>","3d":"<F4>","3e":"<F5>","3f":"<F6>","40":"<F7>",
           "41":"<F8>","42":"<F9>","43":"<F10>","44":"<F11>","45":"<F12>"}
 output = []
 keys = open('usb2.txt','r')
 for line in keys:
     try:
         if line[0]!='0' or (line[1]!='0' and line[1]!='2') or line[3]!='0' or line[4]!='0' or line[9]!='0' or line[10]!='0' or line[12]!='0' or line[13]!='0' or line[15]!='0' or line[16]!='0' or line[18]!='0' or line[19]!='0' or line[21]!='0' or line[22]!='0' or line[6:8]=="00":
              continue
         if line[6:8] in normalKeys.keys():
             output += [[normalKeys[line[6:8]]],[shiftKeys[line[6:8]]]][line[1]=='2']
         else:
             output += ['[unknown]']
     except:
         pass
 keys.close()
 flag=0
 print("".join(output))
 for i in range(len(output)):
     try:
         a=output.index('<DEL>')
         del output[a]
         del output[a-1]
     except:
         pass
 for i in range(len(output)):
     try:
         if output[i]=="<CAP>":
             flag+=1
             output.pop(i)
             if flag==2:
                 flag=0
         if flag!=0:
             output[i]=output[i].upper()
     except:
         pass
 print ('output :' + "".join(output))

发现是身份证号,缺失校验位,计算得出校验位为3,md5后即为flag

posted @ 2024-07-21 02:05  渗透测试中心  阅读(432)  评论(0编辑  收藏  举报