推荐引擎

推荐引擎所需要的数据源

  • 要推荐物品或内容的元数据
  • 系统用户的基本信息
  • 用户对物品或者信息的偏好
    • 显示的用户反馈
    • 隐式的用户反馈

 

 根据推荐引擎的数据源分为:

  • 基于人口统计学的推荐 --- 根据用户的基本信息发现用户的相关度、

 对每个用户都有一个用户 Profile 的建模

根据用户的基本信息,A和C是相似用户,可以成为邻居,基于“邻居”用户群的喜好推荐给当前用户一些物品

  • 基于内容的推荐 --- 根据推荐物品或内容的元数据,发现物品或内容的相关性

对电影的元数据有一个建模

电影A和C被认为是相似的,用户A喜欢电影A,那电影C也可以推荐给用户A

  • 基于协同过滤 

    根据用户对物品或者信息的偏好,发现物品或者内容本身的相关性,或者是发现用户的相关性,然后再基于这些关联性进行推荐

    • 基于用户的
      • 先使用统计技术寻找与目标用户有相同喜好的邻居,然后根据目标用户的邻居的喜好产生向目标用户的推荐

用户A喜欢A、C

用户B喜欢B

用户C喜欢A、C、D

所以用户A和C偏好类似,所以把D推荐给用户A

    • 基于项目的
      • 根据所有用户对物品或者信息的评价,发现物品和物品之间的相似度,然后根据用户的历史偏好信息将类似的物品推荐给该用户

用户A喜欢A、C

用户B喜欢A、B、C

用户C喜欢A

物品A、C比较相似,喜欢A的应该喜欢C,所以,将C推荐给用户C

    • 基于模型的
      • 基于样本的用户喜好信息,训练一个推荐模型,然后根据实时的用户喜好的信息进行预测推荐

 

参考:https://www.ibm.com/developerworks/cn/web/1103_zhaoct_recommstudy1/index.html

posted @   慕尘  阅读(274)  评论(0编辑  收藏  举报
(评论功能已被禁用)
编辑推荐:
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
阅读排行:
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· C#/.NET/.NET Core优秀项目和框架2025年2月简报
· Manus爆火,是硬核还是营销?
· 终于写完轮子一部分:tcp代理 了,记录一下
· 【杭电多校比赛记录】2025“钉耙编程”中国大学生算法设计春季联赛(1)
点击右上角即可分享
微信分享提示