python工具——pixellib

pixellib 可以非常简单的实现图像分割

图像分割分为:

语义分割:将图像中每个像素赋予一个类别标签,用不同的颜色来表示
实例分割:无需对每个像素进行标记,只需要找到感兴趣物体的边缘轮廓

安装需要的库

pip3  install tensorflow
pip3  install pillow
pip3  install opencv-python
pip3  install scikit-image
pip3  install pixellib

语义分隔

步骤:

导入PixelLib模块

创建用于执行语义分割的类实例

调用load_pascalvoc_model()函数加载在Pascal voc上训练的Xception模型

调用segmentAsPascalvoc()函数对图像进行分割,并且分割采用pascalvoc的颜色格式进行

segmentAsPascalvoc()的参数

  path_to_image:分割的目标图像的路径

  path_to_output_image:保存分割后输出图像的路径

eg:

image.py

import pixellib
from pixellib.semantic import semantic_segmentation

segment_image = semantic_segmentation()
segment_image.load_pascalvoc_model("deeplabv3_xception_tf_dim_ordering_tf_kernels.h5")
segment_image.segmentAsPascalvoc("test.jpg", output_image_name = "new.jpg")

带有分段叠加层的图像

添加 overlay=True

import pixellib
from pixellib.semantic import semantic_segmentation
segment_image = semantic_segmentation()
segment_image.load_pascalvoc_model("deeplabv3_xception_tf_dim_ordering_tf_kernels.h5")

segment_image.segmentAsPascalvoc("test.jpg", output_image_name = "new1.jpg", overlay = True)

执行分割所需的推理时间

import pixellib
from pixellib.semantic import semantic_segmentation
import time
segment_image = semantic_segmentation()
segment_image.load_pascalvoc_model("deeplabv3_xception_tf_dim_ordering_tf_kernels.h5")
start = time.time()
segment_image.segmentAsPascalvoc("test.jpg", output_image_name = "new1.jpg", overlay = True)
end = time.time()
print(f"Inference Time: {end-start:.2f}seconds")

xception模型下载地址:

https://github.com/bonlime/keras-deeplab-v3-plus/releases/download/1.1/deeplabv3_xception_tf_dim_ordering_tf_kernels.h5

下载后放在image.py所在目录下

实例分割

import pixellib
from pixellib.instance import instance_segmentation
import time
segment_image = instance_segmentation()
segment_image.load_model("mask_rcnn_coco.h5")
start = time.time()
segment_image.segmentImage("22.jpeg", output_image_name = "22new.jpg")
end = time.time()
print(f"Inference Time: {end-start:.2f}seconds")

 

 用边界框(bounding box)来实现分割

import pixellib
from pixellib.instance import instance_segmentation
import time
segment_image = instance_segmentation()
segment_image.load_model("mask_rcnn_coco.h5")
start = time.time()
segment_image.segmentImage("22.jpeg", output_image_name = "22new1.jpg",show_bboxes = True)
end = time.time()
print(f"Inference Time: {end-start:.2f}seconds")

 耗时

 

更多参考 https://github.com/ayoolaolafenwa/PixelLib

 Tensorflow在Windows下使用踩坑

https://gitee.com/babybeibeili/python-tool/tree/master/image

posted @ 2020-06-03 13:24  慕尘  阅读(1881)  评论(0编辑  收藏  举报