TensorFlow——训练模型的保存和载入的方法介绍

我们在训练好模型的时候,通常是要将模型进行保存的,以便于下次能够直接的将训练好的模型进行载入。

1.保存模型

首先需要建立一个saver,然后在session中通过saver的save即可将模型保存起来,具体的代码流程如下

# 前面的是定义好的模型结构

# 前面的代码是模型的定义代码

saver = tf.train.Saver()    # 生成saver
 
with tf.Session() as sess:
    sess.run(init)          # 模型的初始化
    # 
    # 模型的训练代码,当模型训练完毕后,下面就可以对模型进行保存了
    # 
    saver.save(sess, "model/linear")     # 当路径不存在时,会自动创建路径

2.载入模型

将模型保存后,在保存的路径中,可以看到生成的模型路径,下面我们就能够加载模型了:

saver = tf.train.Saver()

with tf.Session() as sess:
    # 可以对模型进行初始化,也可以不进行模型的初始化,因为后面的加载会覆盖之前的
    # 初始化操作
    sess.run(init)

    saver.restore(sess, "model/linear")

下面我们以linearmodel为例进行讲解:

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import os

train_x = np.linspace(-5, 3, 50)
train_y = train_x * 5 + 10 + np.random.random(50) * 10 - 5

plt.plot(train_x, train_y, 'r.')
plt.grid(True)
plt.show()

X = tf.placeholder(dtype=tf.float32)
Y = tf.placeholder(dtype=tf.float32)

w = tf.Variable(tf.random.truncated_normal([1]), name='Weight')
b = tf.Variable(tf.random.truncated_normal([1]), name='bias')

z = tf.multiply(X, w) + b

cost = tf.reduce_mean(tf.square(Y - z))
learning_rate = 0.01
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

init = tf.global_variables_initializer()

training_epochs = 20
display_step = 2


saver = tf.train.Saver()


if __name__ == '__main__':
    with tf.Session() as sess:
        sess.run(init)
        if os.path.exists("model/"):
            saver.restore(sess, "model/linear")

            w_, b_ = sess.run([w, b])

            print(" Finished ")
            print("W: ", w_, " b: ", b_)
            plt.plot(train_x, train_x * w_ + b_, 'g-', train_x, train_y, 'r.')
            plt.grid(True)
            plt.show()
        else:
            loss_list = []
            for epoch in range(training_epochs):
                for (x, y) in zip(train_x, train_y):
                    sess.run(optimizer, feed_dict={X: x, Y: y})

                if epoch % display_step == 0:
                    loss = sess.run(cost, feed_dict={X: x, Y: y})
                    loss_list.append(loss)
                    print('Iter: ', epoch, ' Loss: ', loss)

            w_, b_ = sess.run([w, b], feed_dict={X: x, Y: y})

            saver.save(sess, "model/linear")

            print(" Finished ")
            print("W: ", w_, " b: ", b_, " loss: ", loss)
            plt.plot(train_x, train_x * w_ + b_, 'g-', train_x, train_y, 'r.')
            plt.grid(True)
            plt.show()

3.查看模型的内容

from tensorflow.python.tools.inspect_checkpoint import print_tensors_in_checkpoint_file
modeldir = 'model/'
print_tensors_in_checkpoint_file(modeldir + 'linear.cpkt', None, True)

在上述使用saver的代码中,我们还可以将参数放入Saver中实现指定存储参数的功能,可以指定存储变量名字和变量的对应关系,如下形式:

saver = tf.train.Saver({'weight_':w, 'bias_':b})
# saver = tf.train.Saver([w, b])

 

posted @ 2019-05-26 00:03  Baby-Lily  阅读(12481)  评论(1编辑  收藏  举报