大数的四则运算JAVA源码

/*
 * Copyright (c) 2006, <a href="http://lib.csdn.net/base/oracle" class='replace_word' title="Oracle知识库" target='_blank' style='color:#df3434; font-weight:bold;'>Oracle</a> and/or its affiliates. All rights reserved.
 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 */
/*
 * %W% %E%
 */
package <a href="http://lib.csdn.net/base/javaee" class='replace_word' title="Java EE知识库" target='_blank' style='color:#df3434; font-weight:bold;'>Java</a>.math;
import java.util.Random;
import java.io.*;
/**
 * Immutable arbitrary-precision integers.  All operations behave as if
 * BigIntegers were represented in two's-complement notation (like Java's
 * primitive integer types).  BigInteger provides analogues to all of Java's
 * primitive integer operators, and all relevant methods from java.lang.Math.
 * Additionally, BigInteger provides operations for modular arithmetic, GCD
 * calculation, primality testing, prime generation, bit manipulation,
 * and a few other miscellaneous operations.
 * <p>
 * Semantics of arithmetic operations exactly mimic those of Java's integer
 * arithmetic operators, as defined in <i>The <a href="http://lib.csdn.net/base/java" class='replace_word' title="Java 知识库" target='_blank' style='color:#df3434; font-weight:bold;'>Java </a>Language Specification</i>.
 * For example, division by zero throws an {@code ArithmeticException}, and
 * division of a negative by a positive yields a negative (or zero) remainder.
 * All of the details in the Spec concerning overflow are ignored, as
 * BigIntegers are made as large as necessary to accommodate the results of an
 * operation.
 * <p>
 * Semantics of shift operations extend those of Java's shift operators
 * to allow for negative shift distances.  A right-shift with a negative
 * shift distance results in a left shift, and vice-versa.  The unsigned
 * right shift operator ({@code >>>}) is omitted, as this operation makes
 * little sense in combination with the "infinite word size" abstraction
 * provided by this class.
 * <p>
 * Semantics of bitwise logical operations exactly mimic those of Java's
 * bitwise integer operators.  The binary operators ({@code and},
 * {@code or}, {@code xor}) implicitly perform sign extension on the shorter
 * of the two operands prior to performing the operation.
 * <p>
 * Comparison operations perform signed integer comparisons, analogous to
 * those performed by Java's relational and equality operators.
 * <p>
 * Modular arithmetic operations are provided to compute residues, perform
 * exponentiation, and compute multiplicative inverses.  These methods always
 * return a non-negative result, between {@code 0} and {@code (modulus - 1)},
 * inclusive.
 * <p>
 * Bit operations operate on a single bit of the two's-complement
 * representation of their operand.  If necessary, the operand is sign-
 * extended so that it contains the designated bit.  None of the single-bit
 * operations can produce a BigInteger with a different sign from the
 * BigInteger being operated on, as they affect only a single bit, and the
 * "infinite word size" abstraction provided by this class ensures that there
 * are infinitely many "virtual sign bits" preceding each BigInteger.
 * <p>
 * For the sake of brevity and clarity, pseudo-code is used throughout the
 * descriptions of BigInteger methods.  The pseudo-code expression
 * {@code (i + j)} is shorthand for "a BigInteger whose value is
 * that of the BigInteger {@code i} plus that of the BigInteger {@code j}."
 * The pseudo-code expression {@code (i == j)} is shorthand for
 * "{@code true} if and only if the BigInteger {@code i} represents the same
 * value as the BigInteger {@code j}."  Other pseudo-code expressions are
 * interpreted similarly.
 * <p>
 * All methods and constructors in this class throw
 * {@code NullPointerException} when passed
 * a null object reference for any input parameter.
 *
 * @see     BigDecimal
 * @author  Josh Bloch
 * @author  Michael McCloskey
 * @since JDK1.1
 */
public class BigInteger extends Number implements Comparable<BigInteger> {
    /**
     * The signum of this BigInteger: -1 for negative, 0 for zero, or
     * 1 for positive.  Note that the BigInteger zero <i>must</i> have
     * a signum of 0.  This is necessary to ensures that there is exactly one
     * representation for each BigInteger value.
     *
     * @serial
     */
    final int signum;
    /**
     * The magnitude of this BigInteger, in <i>big-endian</i> order: the
     * zeroth element of this array is the most-significant int of the
     * magnitude.  The magnitude must be "minimal" in that the most-significant
     * int ({@code mag[0]}) must be non-zero.  This is necessary to
     * ensure that there is exactly one representation for each BigInteger
     * value.  Note that this implies that the BigInteger zero has a
     * zero-length mag array.
     */
    final int[] mag;
    // These "redundant fields" are initialized with recognizable nonsense
    // values, and cached the first time they are needed (or never, if they
    // aren't needed).
    /**
     * One plus the bitCount of this BigInteger. Zeros means unitialized.
     *
     * @serial
     * @see #bitCount
     * @deprecated Deprecated since logical value is offset from stored 
     * value and correction factor is applied in accessor method.
     */
    @Deprecated
    private int bitCount;
    
    /**
     * One plus the bitLength of this BigInteger. Zeros means unitialized. 
     * (either value is acceptable).
     *
     * @serial
     * @see #bitLength()
     * @deprecated Deprecated since logical value is offset from stored 
     * value and correction factor is applied in accessor method.
     */
    @Deprecated
    private int bitLength;
    /**
     * Two plus the lowest set bit of this BigInteger, as returned by 
     * getLowestSetBit().
     *
     * @serial
     * @see #getLowestSetBit
     * @deprecated Deprecated since logical value is offset from stored 
     * value and correction factor is applied in accessor method.
     */
    @Deprecated
    private int lowestSetBit;
    /**
     * Two plus the index of the lowest-order int in the magnitude of this 
     * BigInteger that contains a nonzero int, or -2 (either value is acceptable).
     * The least significant int has int-number 0, the next int in order of 
     * increasing significance has int-number 1, and so forth.
     * @deprecated Deprecated since logical value is offset from stored 
     * value and correction factor is applied in accessor method.
     */
    @Deprecated
    private int firstNonzeroIntNum;
    /**
     * This mask is used to obtain the value of an int as if it were unsigned.
     */
    final static long LONG_MASK = 0xffffffffL;
    
    //Constructors
    /**
     * Translates a byte array containing the two's-complement binary
     * representation of a BigInteger into a BigInteger.  The input array is
     * assumed to be in <i>big-endian</i> byte-order: the most significant
     * byte is in the zeroth element.
     *
     * @param  val big-endian two's-complement binary representation of
     *           BigInteger.
     * @throws NumberFormatException {@code val} is zero bytes long.
     */
    public BigInteger(byte[] val) {
    if (val.length == 0)
        throw new NumberFormatException("Zero length BigInteger");
    if (val[0] < 0) {
            mag = makePositive(val);
        signum = -1;
    } else {
        mag = stripLeadingZeroBytes(val);
        signum = (mag.length == 0 ? 0 : 1);
    }
    }
    /**
     * This private constructor translates an int array containing the
     * two's-complement binary representation of a BigInteger into a
     * BigInteger. The input array is assumed to be in <i>big-endian</i>
     * int-order: the most significant int is in the zeroth element.
     */
    private BigInteger(int[] val) {
    if (val.length == 0)
        throw new NumberFormatException("Zero length BigInteger");
    if (val[0] < 0) {
            mag = makePositive(val);
        signum = -1;
    } else {
        mag = trustedStripLeadingZeroInts(val);
        signum = (mag.length == 0 ? 0 : 1);
    }
    }
    /**
     * Translates the sign-magnitude representation of a BigInteger into a
     * BigInteger.  The sign is represented as an integer signum value: -1 for
     * negative, 0 for zero, or 1 for positive.  The magnitude is a byte array
     * in <i>big-endian</i> byte-order: the most significant byte is in the
     * zeroth element.  A zero-length magnitude array is permissible, and will
     * result in a BigInteger value of 0, whether signum is -1, 0 or 1.
     *
     * @param  signum signum of the number (-1 for negative, 0 for zero, 1
     *            for positive).
     * @param  magnitude big-endian binary representation of the magnitude of
     *            the number.
     * @throws NumberFormatException {@code signum} is not one of the three
     *           legal values (-1, 0, and 1), or {@code signum} is 0 and
     *           {@code magnitude} contains one or more non-zero bytes.
     */
    public BigInteger(int signum, byte[] magnitude) {
    this.mag = stripLeadingZeroBytes(magnitude);
    if (signum < -1 || signum > 1)
        throw(new NumberFormatException("Invalid signum value"));
    if (this.mag.length==0) {
        this.signum = 0;
    } else {
        if (signum == 0)
        throw(new NumberFormatException("signum-magnitude mismatch"));
        this.signum = signum;
    }
    }
    /**
     * A constructor for internal use that translates the sign-magnitude
     * representation of a BigInteger into a BigInteger. It checks the
     * arguments and copies the magnitude so this constructor would be
     * safe for external use.
     */
    private BigInteger(int signum, int[] magnitude) {
    this.mag = stripLeadingZeroInts(magnitude);
    if (signum < -1 || signum > 1)
        throw(new NumberFormatException("Invalid signum value"));
    if (this.mag.length==0) {
        this.signum = 0;
    } else {
        if (signum == 0)
        throw(new NumberFormatException("signum-magnitude mismatch"));
        this.signum = signum;
    }
    }
    /**
     * Translates the String representation of a BigInteger in the specified
     * radix into a BigInteger.  The String representation consists of an
     * optional minus sign followed by a sequence of one or more digits in the
     * specified radix.  The character-to-digit mapping is provided by
     * {@code Character.digit}.  The String may not contain any extraneous
     * characters (whitespace, for example).
     *
     * @param val String representation of BigInteger.
     * @param radix radix to be used in interpreting {@code val}.
     * @throws NumberFormatException {@code val} is not a valid representation
     *           of a BigInteger in the specified radix, or {@code radix} is
     *           outside the range from {@link Character#MIN_RADIX} to
     *           {@link Character#MAX_RADIX}, inclusive.
     * @see    Character#digit
     */
    public BigInteger(String val, int radix) {
    int cursor = 0, numDigits;
        int len = val.length();
    if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
        throw new NumberFormatException("Radix out of range");
    if (val.length() == 0)
        throw new NumberFormatException("Zero length BigInteger");
    // Check for minus sign
        int sign = 1;
        int index = val.lastIndexOf("-");
        if (index != -1) {
            if (index == 0) {
                if (val.length() == 1)
                    throw new NumberFormatException("Zero length BigInteger");
                sign = -1;
                cursor = 1;
            } else {
                throw new NumberFormatException("Illegal embedded minus sign");
            }
        }
        // Skip leading zeros and compute number of digits in magnitude
    while (cursor < len &&
               Character.digit(val.charAt(cursor), radix) == 0)
        cursor++;
    if (cursor == len) {
        mag = ZERO.mag;
            signum = 0;
        return;
    } 
        
        numDigits = len - cursor;
    signum = sign;
        // Pre-allocate array of expected size. May be too large but can
        // never be too small. Typically exact.
        int numBits = (int)(((numDigits * bitsPerDigit[radix]) >>> 10) + 1);
        int numWords = (numBits + 31) >>> 5;
        int[] magnitude = new int[numWords];
    // Process first (potentially short) digit group
    int firstGroupLen = numDigits % digitsPerInt[radix];
    if (firstGroupLen == 0)
        firstGroupLen = digitsPerInt[radix];
    String group = val.substring(cursor, cursor += firstGroupLen);
        magnitude[magnitude.length - 1] = Integer.parseInt(group, radix);
    if (magnitude[magnitude.length - 1] < 0)
        throw new NumberFormatException("Illegal digit");
        
    // Process remaining digit groups
        int superRadix = intRadix[radix];
        int groupVal = 0;
    while (cursor < val.length()) {
        group = val.substring(cursor, cursor += digitsPerInt[radix]);
        groupVal = Integer.parseInt(group, radix);
        if (groupVal < 0)
        throw new NumberFormatException("Illegal digit");
            destructiveMulAdd(magnitude, superRadix, groupVal);
    }
        // Required for cases where the array was overallocated.
        mag = trustedStripLeadingZeroInts(magnitude);
    }
    // Constructs a new BigInteger using a char array with radix=10
    BigInteger(char[] val) {
        int cursor = 0, numDigits;
        int len = val.length;
    // Check for leading minus sign
    int sign = 1;
    if (val[0] == '-') {
        if (len == 1)
        throw new NumberFormatException("Zero length BigInteger");
        sign = -1;
        cursor = 1;
    }
        
        // Skip leading zeros and compute number of digits in magnitude
    while (cursor < len && Character.digit(val[cursor], 10) == 0)
        cursor++;
    if (cursor == len) {
        signum = 0;
        mag = ZERO.mag;
        return;
    }
        
        numDigits = len - cursor;
        signum = sign;
        
        // Pre-allocate array of expected size
        int numWords;
        if (len < 10) {
            numWords = 1;
        } else {    
            int numBits = (int)(((numDigits * bitsPerDigit[10]) >>> 10) + 1);
            numWords = (numBits + 31) >>> 5;
        }
        
        int magnitude[] = new int[numWords];
 
    // Process first (potentially short) digit group
    int firstGroupLen = numDigits % digitsPerInt[10];
    if (firstGroupLen == 0)
        firstGroupLen = digitsPerInt[10];
        magnitude[numWords - 1] = parseInt(val, cursor,  cursor += firstGroupLen);
        
    // Process remaining digit groups
    while (cursor < len) {
        int groupVal = parseInt(val, cursor, cursor += digitsPerInt[10]);
            destructiveMulAdd(magnitude, intRadix[10], groupVal);
    }
        mag = trustedStripLeadingZeroInts(magnitude);
    }
    // Create an integer with the digits between the two indexes
    // Assumes start < end. The result may be negative, but it
    // is to be treated as an unsigned value.
    private int parseInt(char[] source, int start, int end) {
        int result = Character.digit(source[start++], 10);
        if (result == -1)
            throw new NumberFormatException(new String(source));
        for (int index = start; index<end; index++) {
            int nextVal = Character.digit(source[index], 10);
            if (nextVal == -1)
                throw new NumberFormatException(new String(source));
            result = 10*result + nextVal;
        }
        return result;
    }
    // bitsPerDigit in the given radix times 1024
    // Rounded up to avoid underallocation.
    private static long bitsPerDigit[] = { 0, 0,
        1024, 1624, 2048, 2378, 2648, 2875, 3072, 3247, 3402, 3543, 3672,
        3790, 3899, 4001, 4096, 4186, 4271, 4350, 4426, 4498, 4567, 4633,
        4696, 4756, 4814, 4870, 4923, 4975, 5025, 5074, 5120, 5166, 5210,
                                           5253, 5295};
    // Multiply x array times word y in place, and add word z
    private static void destructiveMulAdd(int[] x, int y, int z) {
        // Perform the multiplication word by word
        long ylong = y & LONG_MASK;
        long zlong = z & LONG_MASK;
        int len = x.length;
        long product = 0;
        long carry = 0;
        for (int i = len-1; i >= 0; i--) {
            product = ylong * (x[i] & LONG_MASK) + carry;
            x[i] = (int)product;
            carry = product >>> 32;
        }
        // Perform the addition
        long sum = (x[len-1] & LONG_MASK) + zlong;
        x[len-1] = (int)sum;
        carry = sum >>> 32;
        for (int i = len-2; i >= 0; i--) {
            sum = (x[i] & LONG_MASK) + carry;
            x[i] = (int)sum;
            carry = sum >>> 32;
        }
    }
    /**
     * Translates the decimal String representation of a BigInteger into a
     * BigInteger.  The String representation consists of an optional minus
     * sign followed by a sequence of one or more decimal digits.  The
     * character-to-digit mapping is provided by {@code Character.digit}.
     * The String may not contain any extraneous characters (whitespace, for
     * example).
     *
     * @param val decimal String representation of BigInteger.
     * @throws NumberFormatException {@code val} is not a valid representation
     *           of a BigInteger.
     * @see    Character#digit
     */
    public BigInteger(String val) {
    this(val, 10);
    }
    /**
     * Constructs a randomly generated BigInteger, uniformly distributed over
     * the range {@code 0} to (2<sup>{@code numBits}</sup> - 1), inclusive.
     * The uniformity of the distribution assumes that a fair source of random
     * bits is provided in {@code rnd}.  Note that this constructor always
     * constructs a non-negative BigInteger.
     *
     * @param  numBits maximum bitLength of the new BigInteger.
     * @param  rnd source of randomness to be used in computing the new
     *           BigInteger.
     * @throws IllegalArgumentException {@code numBits} is negative.
     * @see #bitLength()
     */
    public BigInteger(int numBits, Random rnd) {
    this(1, randomBits(numBits, rnd));
    }
    private static byte[] randomBits(int numBits, Random rnd) {
    if (numBits < 0)
        throw new IllegalArgumentException("numBits must be non-negative");
    int numBytes = (int)(((long)numBits+7)/8); // avoid overflow
    byte[] randomBits = new byte[numBytes];
    // Generate random bytes and mask out any excess bits
    if (numBytes > 0) {
        rnd.nextBytes(randomBits);
        int excessBits = 8*numBytes - numBits;
        randomBits[0] &= (1 << (8-excessBits)) - 1;
    }
    return randomBits;
    }
    /**
     * Constructs a randomly generated positive BigInteger that is probably
     * prime, with the specified bitLength.<p>
     *
     * It is recommended that the {@link #probablePrime probablePrime}
     * method be used in preference to this constructor unless there
     * is a compelling need to specify a certainty.
     *
     * @param  bitLength bitLength of the returned BigInteger.
     * @param  certainty a measure of the uncertainty that the caller is
     *         willing to tolerate.  The probability that the new BigInteger
     *           represents a prime number will exceed
     *           (1 - 1/2<sup>{@code certainty}</sup>).  The execution time of
     *           this constructor is proportional to the value of this parameter.
     * @param  rnd source of random bits used to select candidates to be
     *           tested for primality.
     * @throws ArithmeticException {@code bitLength < 2}.
     * @see    #bitLength()
     */
    public BigInteger(int bitLength, int certainty, Random rnd) {
        BigInteger prime;
    if (bitLength < 2)
        throw new ArithmeticException("bitLength < 2");
        // The cutoff of 95 was chosen empirically for best performance
        prime = (bitLength < 95 ? smallPrime(bitLength, certainty, rnd)
                                : largePrime(bitLength, certainty, rnd));
    signum = 1;
    mag = prime.mag;
    }
    // Minimum size in bits that the requested prime number has
    // before we use the large prime number generating algorithms
    private static final int SMALL_PRIME_THRESHOLD = 95;
    // Certainty required to meet the spec of probablePrime
    private static final int DEFAULT_PRIME_CERTAINTY = 100;
    /**
     * Returns a positive BigInteger that is probably prime, with the
     * specified bitLength. The probability that a BigInteger returned
     * by this method is composite does not exceed 2<sup>-100</sup>.
     *
     * @param  bitLength bitLength of the returned BigInteger.
     * @param  rnd source of random bits used to select candidates to be
     *           tested for primality.
     * @return a BigInteger of {@code bitLength} bits that is probably prime
     * @throws ArithmeticException {@code bitLength < 2}.
     * @see    #bitLength()
     * @since 1.4
     */
    public static BigInteger probablePrime(int bitLength, Random rnd) {
    if (bitLength < 2)
        throw new ArithmeticException("bitLength < 2");
        // The cutoff of 95 was chosen empirically for best performance
        return (bitLength < SMALL_PRIME_THRESHOLD ?
                smallPrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd) :
                largePrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd));
    }
    /**
     * Find a random number of the specified bitLength that is probably prime.
     * This method is used for smaller primes, its performance degrades on
     * larger bitlengths.
     *
     * This method assumes bitLength > 1.
     */
    private static BigInteger smallPrime(int bitLength, int certainty, Random rnd) {
        int magLen = (bitLength + 31) >>> 5;
        int temp[] = new int[magLen];
        int highBit = 1 << ((bitLength+31) & 0x1f);  // High bit of high int
        int highMask = (highBit << 1) - 1;  // Bits to keep in high int
        while(true) {
            // Construct a candidate
            for (int i=0; i<magLen; i++)
                temp[i] = rnd.nextInt();
            temp[0] = (temp[0] & highMask) | highBit;  // Ensure exact length
            if (bitLength > 2)
                temp[magLen-1] |= 1;  // Make odd if bitlen > 2
            BigInteger p = new BigInteger(temp, 1);
            // Do cheap "pre-test" if applicable
            if (bitLength > 6) {
                long r = p.remainder(SMALL_PRIME_PRODUCT).longValue();
                if ((r%3==0)  || (r%5==0)  || (r%7==0)  || (r%11==0) || 
                    (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) || 
                    (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0))
                    continue; // Candidate is composite; try another
            }
            
            // All candidates of bitLength 2 and 3 are prime by this point
            if (bitLength < 4)
                return p;
            // Do expensive test if we survive pre-test (or it's inapplicable)
            if (p.primeToCertainty(certainty, rnd))
                return p;
        }
    }
    private static final BigInteger SMALL_PRIME_PRODUCT
                       = valueOf(3L*5*7*11*13*17*19*23*29*31*37*41);
    /**
     * Find a random number of the specified bitLength that is probably prime.
     * This method is more appropriate for larger bitlengths since it uses
     * a sieve to eliminate most composites before using a more expensive
     * test.
     */
    private static BigInteger largePrime(int bitLength, int certainty, Random rnd) {
        BigInteger p;
        p = new BigInteger(bitLength, rnd).setBit(bitLength-1);
        p.mag[p.mag.length-1] &= 0xfffffffe;
        // Use a sieve length likely to contain the next prime number
        int searchLen = (bitLength / 20) * 64;
        BitSieve searchSieve = new BitSieve(p, searchLen);
        BigInteger candidate = searchSieve.retrieve(p, certainty, rnd);
        while ((candidate == null) || (candidate.bitLength() != bitLength)) {
            p = p.add(BigInteger.valueOf(2*searchLen));
            if (p.bitLength() != bitLength)
                p = new BigInteger(bitLength, rnd).setBit(bitLength-1);
            p.mag[p.mag.length-1] &= 0xfffffffe;
            searchSieve = new BitSieve(p, searchLen);
            candidate = searchSieve.retrieve(p, certainty, rnd);
        }
        return candidate;
    }
   /**
    * Returns the first integer greater than this {@code BigInteger} that
    * is probably prime.  The probability that the number returned by this
    * method is composite does not exceed 2<sup>-100</sup>. This method will
    * never skip over a prime when searching: if it returns {@code p}, there
    * is no prime {@code q} such that {@code this < q < p}.
    *
    * @return the first integer greater than this {@code BigInteger} that
    *         is probably prime.
    * @throws ArithmeticException {@code this < 0}.
    * @since 1.5
    */
    public BigInteger nextProbablePrime() {
        if (this.signum < 0)
            throw new ArithmeticException("start < 0: " + this);
        
        // Handle trivial cases
        if ((this.signum == 0) || this.equals(ONE))
            return TWO;
        BigInteger result = this.add(ONE);
        // Fastpath for small numbers
        if (result.bitLength() < SMALL_PRIME_THRESHOLD) {
 
            // Ensure an odd number
            if (!result.testBit(0))
                result = result.add(ONE);
            while(true) {
                // Do cheap "pre-test" if applicable
                if (result.bitLength() > 6) {
                    long r = result.remainder(SMALL_PRIME_PRODUCT).longValue();
                    if ((r%3==0)  || (r%5==0)  || (r%7==0)  || (r%11==0) || 
                        (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) || 
                        (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0)) {
                        result = result.add(TWO);
                        continue; // Candidate is composite; try another
                    }
                }
            
                // All candidates of bitLength 2 and 3 are prime by this point
                if (result.bitLength() < 4)
                    return result;
                // The expensive test
                if (result.primeToCertainty(DEFAULT_PRIME_CERTAINTY, null))
                    return result;
                result = result.add(TWO);
            }
        }
        // Start at previous even number
        if (result.testBit(0))
            result = result.subtract(ONE);
        // Looking for the next large prime
        int searchLen = (result.bitLength() / 20) * 64;
        while(true) {
           BitSieve searchSieve = new BitSieve(result, searchLen);
           BigInteger candidate = searchSieve.retrieve(result,
                         DEFAULT_PRIME_CERTAINTY, null);
           if (candidate != null)
               return candidate;
           result = result.add(BigInteger.valueOf(2 * searchLen));
        }
    }
    /**
     * Returns {@code true} if this BigInteger is probably prime,
     * {@code false} if it's definitely composite.
     *
     * This method assumes bitLength > 2.
     *
     * @param  certainty a measure of the uncertainty that the caller is
     *           willing to tolerate: if the call returns {@code true}
     *           the probability that this BigInteger is prime exceeds
     *           {@code (1 - 1/2<sup>certainty</sup>)}.  The execution time of
     *            this method is proportional to the value of this parameter.
     * @return {@code true} if this BigInteger is probably prime,
     *            {@code false} if it's definitely composite.
     */
    boolean primeToCertainty(int certainty, Random random) {
        int rounds = 0;
        int n = (Math.min(certainty, Integer.MAX_VALUE-1)+1)/2;
        // The relationship between the certainty and the number of rounds
        // we perform is given in the draft standard ANSI X9.80, "PRIME
        // NUMBER GENERATION, PRIMALITY TESTING, AND PRIMALITY CERTIFICATES".
        int sizeInBits = this.bitLength();
        if (sizeInBits < 100) {
            rounds = 50;
            rounds = n < rounds ? n : rounds;
            return passesMillerRabin(rounds, random);
        }
        if (sizeInBits < 256) {
            rounds = 27;
        } else if (sizeInBits < 512) {
            rounds = 15;
        } else if (sizeInBits < 768) {
            rounds = 8;
        } else if (sizeInBits < 1024) {
            rounds = 4;
        } else {
            rounds = 2;
        }
        rounds = n < rounds ? n : rounds;
        return passesMillerRabin(rounds, random) && passesLucasLehmer();
    }
    /**
     * Returns true iff this BigInteger is a Lucas-Lehmer probable prime.
     *
     * The following assumptions are made:
     * This BigInteger is a positive, odd number.
     */
    private boolean passesLucasLehmer() {
        BigInteger thisPlusOne = this.add(ONE);
        // Step 1
        int d = 5;
        while (jacobiSymbol(d, this) != -1) {
            // 5, -7, 9, -11, ...
            d = (d<0) ? Math.abs(d)+2 : -(d+2);
        }
        
        // Step 2
        BigInteger u = lucasLehmerSequence(d, thisPlusOne, this);
        // Step 3
        return u.mod(this).equals(ZERO);
    }
    /**
     * Computes Jacobi(p,n).
     * Assumes n positive, odd, n>=3.
     */
    private static int jacobiSymbol(int p, BigInteger n) {
        if (p == 0)
            return 0;
        // Algorithm and comments adapted from Colin Plumb's C library.
    int j = 1;
    int u = n.mag[n.mag.length-1];
        // Make p positive
        if (p < 0) {
            p = -p;
            int n8 = u & 7;
            if ((n8 == 3) || (n8 == 7))
                j = -j; // 3 (011) or 7 (111) mod 8
        }
    // Get rid of factors of 2 in p
    while ((p & 3) == 0)
            p >>= 2;
    if ((p & 1) == 0) {
            p >>= 1;
            if (((u ^ (u>>1)) & 2) != 0)
                j = -j;    // 3 (011) or 5 (101) mod 8
    }
    if (p == 1)
        return j;
    // Then, apply quadratic reciprocity
    if ((p & u & 2) != 0)    // p = u = 3 (mod 4)?
        j = -j;
    // And reduce u mod p
    u = n.mod(BigInteger.valueOf(p)).intValue();
    // Now compute Jacobi(u,p), u < p
    while (u != 0) {
            while ((u & 3) == 0)
                u >>= 2;
            if ((u & 1) == 0) {
                u >>= 1;
                if (((p ^ (p>>1)) & 2) != 0)
                    j = -j;    // 3 (011) or 5 (101) mod 8
            }
            if (u == 1)
                return j;
            // Now both u and p are odd, so use quadratic reciprocity
            assert (u < p);
            int t = u; u = p; p = t;
            if ((u & p & 2) != 0) // u = p = 3 (mod 4)?
                j = -j;
            // Now u >= p, so it can be reduced
            u %= p;
    }
    return 0;
    }
    private static BigInteger lucasLehmerSequence(int z, BigInteger k, BigInteger n) {
        BigInteger d = BigInteger.valueOf(z);
        BigInteger u = ONE; BigInteger u2;
        BigInteger v = ONE; BigInteger v2;
        for (int i=k.bitLength()-2; i>=0; i--) {
            u2 = u.multiply(v).mod(n);
            v2 = v.square().add(d.multiply(u.square())).mod(n);
            if (v2.testBit(0))
                v2 = v2.subtract(n);
            
            v2 = v2.shiftRight(1);
            u = u2; v = v2;
            if (k.testBit(i)) {
                u2 = u.add(v).mod(n);
                if (u2.testBit(0)) 
                    u2 = u2.subtract(n);
      
                u2 = u2.shiftRight(1);          
                v2 = v.add(d.multiply(u)).mod(n);
                if (v2.testBit(0))
                    v2 = v2.subtract(n);
                
                v2 = v2.shiftRight(1);
                u = u2; v = v2;
            }
        }
        return u;
    }
    private static volatile Random staticRandom;
    private static Random getSecureRandom() {
    if (staticRandom == null) {
        staticRandom = new java.security.SecureRandom();
    }
    return staticRandom;
    }
    /**
     * Returns true iff this BigInteger passes the specified number of
     * Miller-Rabin tests. This test is taken from the DSA spec (NIST FIPS
     * 186-2).
     *
     * The following assumptions are made:
     * This BigInteger is a positive, odd number greater than 2.
     * iterations<=50.
     */
    private boolean passesMillerRabin(int iterations, Random rnd) {
    // Find a and m such that m is odd and this == 1 + 2**a * m
        BigInteger thisMinusOne = this.subtract(ONE);
    BigInteger m = thisMinusOne;
    int a = m.getLowestSetBit();
    m = m.shiftRight(a);
    // Do the tests
    if (rnd == null) {
        rnd = getSecureRandom();
    }
    for (int i=0; i<iterations; i++) {
        // Generate a uniform random on (1, this)
        BigInteger b;
        do {
        b = new BigInteger(this.bitLength(), rnd);
        } while (b.compareTo(ONE) <= 0 || b.compareTo(this) >= 0);
        int j = 0;
        BigInteger z = b.modPow(m, this);
        while(!((j==0 && z.equals(ONE)) || z.equals(thisMinusOne))) {
        if (j>0 && z.equals(ONE) || ++j==a)
            return false;
        z = z.modPow(TWO, this);
        }
    }
    return true;
    }
    /**
     * This internal constructor differs from its public cousin
     * with the arguments reversed in two ways: it assumes that its
     * arguments are correct, and it doesn't copy the magnitude array.
     */
    BigInteger(int[] magnitude, int signum) {
    this.signum = (magnitude.length==0 ? 0 : signum);
    this.mag = magnitude;
    }
    /**
     * This private constructor is for internal use and assumes that its
     * arguments are correct.
     */
    private BigInteger(byte[] magnitude, int signum) {
    this.signum = (magnitude.length==0 ? 0 : signum);
        this.mag = stripLeadingZeroBytes(magnitude);
    }
    //Static Factory Methods
    /**
     * Returns a BigInteger whose value is equal to that of the
     * specified {@code long}.  This "static factory method" is
     * provided in preference to a ({@code long}) constructor
     * because it allows for reuse of frequently used BigIntegers.
     *
     * @param  val value of the BigInteger to return.
     * @return a BigInteger with the specified value.
     */
    public static BigInteger valueOf(long val) {
    // If -MAX_CONSTANT < val < MAX_CONSTANT, return stashed constant
    if (val == 0)
        return ZERO;
    if (val > 0 && val <= MAX_CONSTANT)
        return posConst[(int) val];
    else if (val < 0 && val >= -MAX_CONSTANT)
        return negConst[(int) -val];
    return new BigInteger(val);
    }
    /**
     * Constructs a BigInteger with the specified value, which may not be zero.
     */
    private BigInteger(long val) {
        if (val < 0) {
            val = -val;
            signum = -1;
        } else {
            signum = 1;
        }
        int highWord = (int)(val >>> 32);
        if (highWord==0) {
            mag = new int[1];
            mag[0] = (int)val;
        } else {
            mag = new int[2];
            mag[0] = highWord;
            mag[1] = (int)val;
        }
    }
    /**
     * Returns a BigInteger with the given two's complement representation.
     * Assumes that the input array will not be modified (the returned
     * BigInteger will reference the input array if feasible).
     */
    private static BigInteger valueOf(int val[]) {
        return (val[0]>0 ? new BigInteger(val, 1) : new BigInteger(val));
    }
    // Constants
    /**
     * Initialize static constant array when class is loaded.
     */
    private final static int MAX_CONSTANT = 16;
    private static BigInteger posConst[] = new BigInteger[MAX_CONSTANT+1];
    private static BigInteger negConst[] = new BigInteger[MAX_CONSTANT+1];
    static {
    for (int i = 1; i <= MAX_CONSTANT; i++) {
        int[] magnitude = new int[1];
        magnitude[0] = i;
        posConst[i] = new BigInteger(magnitude,  1);
        negConst[i] = new BigInteger(magnitude, -1);
    }
    }
    /**
     * The BigInteger constant zero.
     *
     * @since   1.2
     */
    public static final BigInteger ZERO = new BigInteger(new int[0], 0);
    /**
     * The BigInteger constant one.
     *
     * @since   1.2
     */
    public static final BigInteger ONE = valueOf(1);
    /**
     * The BigInteger constant two.  (Not exported.)
     */
    private static final BigInteger TWO = valueOf(2);
    /**
     * The BigInteger constant ten.
     *
     * @since   1.5
     */
    public static final BigInteger TEN = valueOf(10);
    // Arithmetic Operations
    /**
     * Returns a BigInteger whose value is {@code (this + val)}.
     *
     * @param  val value to be added to this BigInteger.
     * @return {@code this + val}
     */
    public BigInteger add(BigInteger val) {
    if (val.signum == 0)
            return this;
    if (signum == 0)
        return val;
    if (val.signum == signum)
            return new BigInteger(add(mag, val.mag), signum);
        int cmp = compareMagnitude(val);
        if (cmp==0)
            return ZERO;
        int[] resultMag = (cmp>0 ? subtract(mag, val.mag) : 
                           subtract(val.mag, mag));
        resultMag = trustedStripLeadingZeroInts(resultMag);
        return new BigInteger(resultMag, cmp == signum ? 1 : -1);
    }
    
    /**
     * Adds the contents of the int arrays x and y. This method allocates
     * a new int array to hold the answer and returns a reference to that
     * array.
     */
    private static int[] add(int[] x, int[] y) {
        // If x is shorter, swap the two arrays
        if (x.length < y.length) {
            int[] tmp = x;
            x = y;
            y = tmp;
        }
        int xIndex = x.length;
        int yIndex = y.length;
        int result[] = new int[xIndex];
        long sum = 0;
        // Add common parts of both numbers
        while(yIndex > 0) {
            sum = (x[--xIndex] & LONG_MASK) + 
                  (y[--yIndex] & LONG_MASK) + (sum >>> 32);
            result[xIndex] = (int)sum;
        }
        // Copy remainder of longer number while carry propagation is required
        boolean carry = (sum >>> 32 != 0);
        while (xIndex > 0 && carry)
            carry = ((result[--xIndex] = x[xIndex] + 1) == 0);
        // Copy remainder of longer number
        while (xIndex > 0)
            result[--xIndex] = x[xIndex];
        // Grow result if necessary
        if (carry) {
            int bigger[] = new int[result.length + 1];
            System.arraycopy(result, 0, bigger, 1, result.length);
            bigger[0] = 0x01;
            return bigger;
        }
        return result;
    }
    /**
     * Returns a BigInteger whose value is {@code (this - val)}.
     *
     * @param  val value to be subtracted from this BigInteger.
     * @return {@code this - val}
     */
    public BigInteger subtract(BigInteger val) {
    if (val.signum == 0)
            return this;
    if (signum == 0)
        return val.negate();
    if (val.signum != signum)
            return new BigInteger(add(mag, val.mag), signum);
        int cmp = compareMagnitude(val);
        if (cmp==0)
            return ZERO;
        int[] resultMag = (cmp>0 ? subtract(mag, val.mag)
                           : subtract(val.mag, mag));
        resultMag = trustedStripLeadingZeroInts(resultMag);
        return new BigInteger(resultMag, (cmp == signum) ? 1 : -1);
    }
    /**
     * Subtracts the contents of the second int arrays (little) from the
     * first (big).  The first int array (big) must represent a larger number
     * than the second.  This method allocates the space necessary to hold the
     * answer.
     */
    private static int[] subtract(int[] big, int[] little) {
        int bigIndex = big.length;
        int result[] = new int[bigIndex];
        int littleIndex = little.length;
        long difference = 0;
        // Subtract common parts of both numbers
        while(littleIndex > 0) {
            difference = (big[--bigIndex] & LONG_MASK) - 
                         (little[--littleIndex] & LONG_MASK) +
                         (difference >> 32);
            result[bigIndex] = (int)difference;
        }
        // Subtract remainder of longer number while borrow propagates
        boolean borrow = (difference >> 32 != 0);
        while (bigIndex > 0 && borrow)
            borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1);
        // Copy remainder of longer number
        while (bigIndex > 0)
            result[--bigIndex] = big[bigIndex];
        return result;
    }
    
    /**
     * Returns a BigInteger whose value is {@code (this * val)}.
     *
     * @param  val value to be multiplied by this BigInteger.
     * @return {@code this * val}
     */
    public BigInteger multiply(BigInteger val) {
        if (val.signum == 0 || signum == 0)
        return ZERO;
        int[] res = multiplyToLen(mag, mag.length, val.mag, val.mag.length, null);
        res = trustedStripLeadingZeroInts(res);
        return new BigInteger(res, signum == val.signum ? 1 : -1);
    }
    
    /**
     * Package private methods used by BigDecimal code to multiply a BigInteger 
     * with a long. Assumes v is not equal to INFLATED.
     */
    BigInteger multiply(long v) {
        if (v == 0 || signum == 0)
          return ZERO;
        assert v != BigDecimal.INFLATED;
        int rsign = (v > 0 ? signum : -signum);
        if (v < 0)
            v = -v;
        long dh = v >>> 32;      // higher order bits
        long dl = v & LONG_MASK; // lower order bits
        int xlen = mag.length;
        int[] value = mag;
        int[] rmag = (dh == 0L) ? (new int[xlen + 1]) : (new int[xlen + 2]);
        long carry = 0;
        int rstart = rmag.length - 1;
        for (int i = xlen - 1; i >= 0; i--) {
            long product = (value[i] & LONG_MASK) * dl + carry;
            rmag[rstart--] = (int)product;
            carry = product >>> 32;
        }
        rmag[rstart] = (int)carry;
        if (dh != 0L) {
            carry = 0;
            rstart = rmag.length - 2;
            for (int i = xlen - 1; i >= 0; i--) {
                long product = (value[i] & LONG_MASK) * dh + 
                    (rmag[rstart] & LONG_MASK) + carry;
                rmag[rstart--] = (int)product;
                carry = product >>> 32;
            }
            rmag[0] = (int)carry;
        }
    if (carry == 0L)
        rmag = java.util.Arrays.copyOfRange(rmag, 1, rmag.length);
        return new BigInteger(rmag, rsign);
    }
    /**
     * Multiplies int arrays x and y to the specified lengths and places
     * the result into z. There will be no leading zeros in the resultant array.
     */
    private int[] multiplyToLen(int[] x, int xlen, int[] y, int ylen, int[] z) {
        int xstart = xlen - 1;
        int ystart = ylen - 1;
        if (z == null || z.length < (xlen+ ylen))
            z = new int[xlen+ylen];
        
        long carry = 0;
        for (int j=ystart, k=ystart+1+xstart; j>=0; j--, k--) {
            long product = (y[j] & LONG_MASK) *
                           (x[xstart] & LONG_MASK) + carry;
            z[k] = (int)product;
            carry = product >>> 32;
        }
        z[xstart] = (int)carry;
        for (int i = xstart-1; i >= 0; i--) {
            carry = 0;
            for (int j=ystart, k=ystart+1+i; j>=0; j--, k--) {
                long product = (y[j] & LONG_MASK) * 
                               (x[i] & LONG_MASK) + 
                               (z[k] & LONG_MASK) + carry;
                z[k] = (int)product;
                carry = product >>> 32;
            }
            z[i] = (int)carry;
        }
        return z;
    }
    /**
     * Returns a BigInteger whose value is {@code (this<sup>2</sup>)}.
     *
     * @return {@code this<sup>2</sup>}
     */
    private BigInteger square() {
        if (signum == 0)
        return ZERO;
        int[] z = squareToLen(mag, mag.length, null);
        return new BigInteger(trustedStripLeadingZeroInts(z), 1);
    }
    /**
     * Squares the contents of the int array x. The result is placed into the
     * int array z.  The contents of x are not changed.
     */
    private static final int[] squareToLen(int[] x, int len, int[] z) {
        /*
         * The algorithm used here is adapted from Colin Plumb's C library.
         * Technique: Consider the partial products in the multiplication
         * of "abcde" by itself:
         *
         *               a  b  c  d  e
         *            *  a  b  c  d  e
         *          ==================
         *              ae be ce de ee
         *           ad bd cd dd de
         *        ac bc cc cd ce
         *     ab bb bc bd be
         *  aa ab ac ad ae
         *
         * Note that everything above the main diagonal:
         *              ae be ce de = (abcd) * e
         *           ad bd cd       = (abc) * d
         *        ac bc             = (ab) * c
         *     ab                   = (a) * b
         *
         * is a copy of everything below the main diagonal:
         *                       de
         *                 cd ce
         *           bc bd be
         *     ab ac ad ae
         *
         * Thus, the sum is 2 * (off the diagonal) + diagonal.
         *
         * This is accumulated beginning with the diagonal (which
         * consist of the squares of the digits of the input), which is then
         * divided by two, the off-diagonal added, and multiplied by two
         * again.  The low bit is simply a copy of the low bit of the
         * input, so it doesn't need special care.
         */
        int zlen = len << 1;
        if (z == null || z.length < zlen)
            z = new int[zlen];
        
        // Store the squares, right shifted one bit (i.e., divided by 2)
        int lastProductLowWord = 0;
        for (int j=0, i=0; j<len; j++) {
            long piece = (x[j] & LONG_MASK);
            long product = piece * piece;
            z[i++] = (lastProductLowWord << 31) | (int)(product >>> 33);
            z[i++] = (int)(product >>> 1);
            lastProductLowWord = (int)product;
        }
        // Add in off-diagonal sums
        for (int i=len, offset=1; i>0; i--, offset+=2) {
            int t = x[i-1];
            t = mulAdd(z, x, offset, i-1, t);
            addOne(z, offset-1, i, t);
        }
        // Shift back up and set low bit
        primitiveLeftShift(z, zlen, 1);
        z[zlen-1] |= x[len-1] & 1;
        return z;
    }
    /**
     * Returns a BigInteger whose value is {@code (this / val)}.
     *
     * @param  val value by which this BigInteger is to be divided.
     * @return {@code this / val}
     * @throws ArithmeticException {@code val==0}
     */
    public BigInteger divide(BigInteger val) {
        MutableBigInteger q = new MutableBigInteger(),
                          a = new MutableBigInteger(this.mag),
                          b = new MutableBigInteger(val.mag);
        a.divide(b, q);
        return q.toBigInteger(this.signum * val.signum);
    }
    /**
     * Returns an array of two BigIntegers containing {@code (this / val)}
     * followed by {@code (this % val)}.
     *
     * @param  val value by which this BigInteger is to be divided, and the
     *           remainder computed.
     * @return an array of two BigIntegers: the quotient {@code (this / val)}
     *           is the initial element, and the remainder {@code (this % val)}
     *           is the final element.
     * @throws ArithmeticException {@code val==0}
     */
    public BigInteger[] divideAndRemainder(BigInteger val) {
        BigInteger[] result = new BigInteger[2];
        MutableBigInteger q = new MutableBigInteger(),
                          a = new MutableBigInteger(this.mag),
                          b = new MutableBigInteger(val.mag);
        MutableBigInteger r = a.divide(b, q);
        result[0] = q.toBigInteger(this.signum * val.signum);
        result[1] = r.toBigInteger(this.signum);
        return result;
    }
    /**
     * Returns a BigInteger whose value is {@code (this % val)}.
     *
     * @param  val value by which this BigInteger is to be divided, and the
     *           remainder computed.
     * @return {@code this % val}
     * @throws ArithmeticException {@code val==0}
     */
    public BigInteger remainder(BigInteger val) {
        MutableBigInteger q = new MutableBigInteger(),
                          a = new MutableBigInteger(this.mag),
                          b = new MutableBigInteger(val.mag);
        return a.divide(b, q).toBigInteger(this.signum);
    }
    /**
     * Returns a BigInteger whose value is <tt>(this<sup>exponent</sup>)</tt>.
     * Note that {@code exponent} is an integer rather than a BigInteger.
     *
     * @param  exponent exponent to which this BigInteger is to be raised.
     * @return <tt>this<sup>exponent</sup></tt>
     * @throws ArithmeticException {@code exponent} is negative.  (This would
     *           cause the operation to yield a non-integer value.)
     */
    public BigInteger pow(int exponent) {
    if (exponent < 0)
        throw new ArithmeticException("Negative exponent");
    if (signum==0)
        return (exponent==0 ? ONE : this);
    // Perform exponentiation using repeated squaring trick
        int newSign = (signum<0 && (exponent&1)==1 ? -1 : 1);
    int[] baseToPow2 = this.mag;
        int[] result = {1};
    while (exponent != 0) {
        if ((exponent & 1)==1) {
        result = multiplyToLen(result, result.length, 
                                       baseToPow2, baseToPow2.length, null);
        result = trustedStripLeadingZeroInts(result);
        }
        if ((exponent >>>= 1) != 0) {
                baseToPow2 = squareToLen(baseToPow2, baseToPow2.length, null);
        baseToPow2 = trustedStripLeadingZeroInts(baseToPow2);
        }
    }
    return new BigInteger(result, newSign);
    }
    /**
     * Returns a BigInteger whose value is the greatest common divisor of
     * {@code abs(this)} and {@code abs(val)}.  Returns 0 if
     * {@code this==0 && val==0}.
     *
     * @param  val value with which the GCD is to be computed.
     * @return {@code GCD(abs(this), abs(val))}
     */
    public BigInteger gcd(BigInteger val) {
        if (val.signum == 0)
        return this.abs();
    else if (this.signum == 0)
        return val.abs();
        MutableBigInteger a = new MutableBigInteger(this);
        MutableBigInteger b = new MutableBigInteger(val);
        MutableBigInteger result = a.hybridGCD(b);
        return result.toBigInteger(1);
    }
    /**
     * Package private method to return bit length for an integer.
     * 
     */
    static int bitLengthForInt(int n) {
        return 32 - Integer.numberOfLeadingZeros(n);
    }
    /**
     * Left shift int array a up to len by n bits. Returns the array that
     * results from the shift since space may have to be reallocated.
     */
    private static int[] leftShift(int[] a, int len, int n) {
        int nInts = n >>> 5;
        int nBits = n&0x1F;
        int bitsInHighWord = bitLengthForInt(a[0]);
        
        // If shift can be done without recopy, do so
        if (n <= (32-bitsInHighWord)) {
            primitiveLeftShift(a, len, nBits);
            return a;
        } else { // Array must be resized
            if (nBits <= (32-bitsInHighWord)) {
                int result[] = new int[nInts+len];
                for (int i=0; i<len; i++)
                    result[i] = a[i];
                primitiveLeftShift(result, result.length, nBits);
                return result;
            } else {
                int result[] = new int[nInts+len+1];
                for (int i=0; i<len; i++)
                    result[i] = a[i];
                primitiveRightShift(result, result.length, 32 - nBits);
                return result;
            }
        }
    }
    // shifts a up to len right n bits assumes no leading zeros, 0<n<32
    static void primitiveRightShift(int[] a, int len, int n) {
        int n2 = 32 - n;
        for (int i=len-1, c=a[i]; i>0; i--) {
            int b = c;
            c = a[i-1];
            a[i] = (c << n2) | (b >>> n);
        }
        a[0] >>>= n;
    }
    // shifts a up to len left n bits assumes no leading zeros, 0<=n<32
    static void primitiveLeftShift(int[] a, int len, int n) {
        if (len == 0 || n == 0)
            return;
        int n2 = 32 - n;
        for (int i=0, c=a[i], m=i+len-1; i<m; i++) {
            int b = c;
            c = a[i+1];
            a[i] = (b << n) | (c >>> n2);
        }
        a[len-1] <<= n;
    }
    /**
     * Calculate bitlength

 

posted @ 2016-11-05 20:38  L.P.B_Blizzard  阅读(586)  评论(0编辑  收藏  举报