CodeForces 786E ALT
Description
\(n\) 个点的树, \(m\) 个工人。每个工人要从 \(u_i\) 走到 \(v_i\) ,要满足该路径上每条边都有一条狗,或者让这个工人携带一条狗,问最少需要多少狗。
\(2\le n\le 2\times 10^4,1\le m\le 10^4\)
Solution
最小割。
显然的建图是 \(S\) 向每个工人连流量 \(1\) 的边,每条边向 \(T\) 连流量 \(1\) 边,每个工人向他的边连 \(+ \infty\) 的边。
这样就完蛋了,边太多无法信仰。
于是就树链剖分线段树优化建边。
说实话挺难写的。
#include<bits/stdc++.h>
using namespace std;
template <class T> void read(T &x) {
x = 0; bool flag = 0; char ch = getchar(); for (; ch < '0' || ch > '9'; ch = getchar()) flag |= ch == '-';
for (; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - 48; flag ? x = ~x + 1 : 0;
}
//#pragma GCC diagnostic error "-std=c++14"
#define N 20010
#define M 10010
#define rep(i, a, b) for (auto i = (a); i <= (b); i++)
#define drp(i, a, b) for (auto i = (a); i >= (b); i--)
#define ll long long
#define INF 0x3f3f3f3f
#define nd N * 2 + M
int head[nd], cur[nd], tot = 1, q[nd], dep[nd];
struct edge { int v, c, next; }e[5000010];
inline void insert(int u, int v, int c) {
e[++tot].v = v, e[tot].c = c, e[tot].next = head[u]; head[u] = tot;
}
inline void add(int u, int v, int c) { insert(u, v, c), insert(v, u, 0); }
inline bool bfs(int S, int T) {
memset(dep, 0, sizeof dep); dep[S] = 1;
int l = 1, r = 1; q[1] = S;
while (l <= r) {
int u = q[l++];
for (int i = head[u], v; i; i = e[i].next) if (e[i].c && !dep[v = e[i].v]) {
dep[v] = dep[u] + 1, q[++r] = v;
if (v == T) return 1;
}
}
return 0;
}
int dfs(int u, int dist, int T) {
if (u == T) return dist;
int ret = 0;
for (int &i = head[u], v; i; i = e[i].next) if (dep[v = e[i].v] == dep[u] + 1 && e[i].c) {
int d = dfs(v, min(dist - ret, e[i].c), T);
e[i].c -= d, e[i ^ 1].c += d, ret += d;
if (ret == dist) return dist;
}
if (!ret) dep[u] = -1;
return ret;
}
bool vis[nd];
void getVis(int u) {
vis[u] = 1;
for (int i = head[u]; i; i = e[i].next) if (e[i].c && !vis[e[i].v]) getVis(e[i].v);
}
int dinic(int S, int T) {
int ret = 0; memcpy(cur, head, sizeof head);
while (bfs(S, T)) ret += dfs(S, INF, T), memcpy(head, cur, sizeof cur);
return ret;
}
#define pii pair<int, int>
list<pii> g[N];
int fa[N], siz[N], val[N], dep2[N], bl[N], son[N], dfn[N], pos[N];
void dfs(int u) {
siz[u] = 1;
for (pii i : g[u]) {
int v = i.first, id = i.second;
if (v == fa[u]) continue;
val[v] = id, dep2[v] = dep2[u] + 1, fa[v] = u, dfs(v), siz[u] += siz[v];
if (siz[v] > siz[son[u]]) son[u] = v;
}
}
void dfs(int u, int top) {
bl[u] = top;
static int ind; dfn[u] = ++ind, pos[ind] = val[u];
if (son[u]) dfs(son[u], top);
for (pii i : g[u]) {
int v = i.first;
if (v == fa[u] || v == son[u]) continue;
dfs(v, v);
}
}
int S, T;
int a[M], b[N];
int ndCnt, root;
struct Node { int ls, rs; }tr[N << 1];
#define mid (l + r >> 1)
void build(int& rt, int l, int r) {
if (!rt) rt = ++ndCnt;
if (l == r) {
add(rt, T, 1), b[pos[l]] = rt;
return;
}
build(tr[rt].ls, l, mid), build(tr[rt].rs, mid + 1, r);
add(rt, tr[rt].ls, INF), add(rt, tr[rt].rs, INF);
}
void query(int rt, int l, int r, int L, int R, int v) {
if (L <= l && r <= R) { add(v, rt, INF); return; }
if (L <= mid) query(tr[rt].ls, l, mid, L, R, v);
if (R > mid) query(tr[rt].rs, mid + 1, r, L, R, v);
}
list<int> ans1, ans2;
int main() {
int n, m; read(n), read(m);
rep(i, 1, n - 1) {
int u, v; read(u), read(v);
g[u].push_back(pii(v, i)), g[v].push_back(pii(u, i));
}
dfs(1), dfs(1, 1);
S = 1, T = 2, ndCnt = 2;
build(root, 1, n);
rep(i, 1, m) {
a[i] = ndCnt + i;
add(S, ndCnt + i, 1);
int u, v; read(u), read(v);
while (bl[u] ^ bl[v]) {
if (dep2[bl[u]] < dep2[bl[v]]) swap(u, v);
query(root, 1, n, dfn[bl[u]], dfn[u], i + ndCnt), u = fa[bl[u]];
}
if (dep2[u] > dep2[v]) swap(u, v);
query(root, 1, n, dfn[son[u]], dfn[v], i + ndCnt);
}
printf("%d\n", dinic(S, T));
getVis(S);
rep(i, 1, m) if (!vis[a[i]]) ans1.push_back(i);
rep(i, 1, n) if (vis[b[i]]) ans2.push_back(i);
printf("%d ", ans1.size()); for (int x : ans1) printf("%d ", x); puts("");
printf("%d ", ans2.size()); for (int x : ans2) printf("%d ", x); puts("");
return 0;
}