CodeForces - 261E Maxim and Calculator

Description

Philips 得到了一个计算器,这个计算器有两个整数单元,一开始,第一个单元包含数字 \(1\) , 第二个单元包含数字 \(0\) 。 这个计算器支持一以下两种操作:

  1. 假设第一个单元的数字为 \(a\) ,第二个单元的数字为 \(b\) ,那么将第二个单元的数字改成 \(b+1\)
  2. 假设第一个单元的数字为 \(a\) ,第二个单元的数字为 \(b\) ,那么将第一个单元的数字改成 \(a\times b\)

现在 Philips 想知道,有多少个正整数 \(x(l\le x\le r)​\) 满足, 存在一种方式从计算器初始状态开始,操作不超过 \(p​\) 步之后使得第一个单元中的数字为 \(x​\)

\(2\le l,r\le 10^9\)\(1\le p\le 100\)

Solution

显然 \(b\le p\) ,即 \(a\) 不会有大于 \(p\) 的约数。

所以把小于 \(p\) 的质数全部筛出来,dfs出所有不超过 \(r\) 的能用这些质因数表示的数。这样的数最多有 \(2944730\) 个。

\(f[i][j]\) 表示第一维变成 \(i\) 第二维变成 \(j\) ,操作 \(2\) 的最少次数。显然第二维可以滚动掉。

把这些数全部排序(看起来很慢,但要相信评测姬的速度),然后外层枚举 \(i\in[2,p)\) ,内层枚举 \(j\in[1,n]\) ,如果 \(i|a[j]\) ,则寻找一个 \(k\) 使得 \(i \times a[k]=a[j]\) ,用 \(f[k]\) 更新 \(f[j]\) 。判断的话看一下 \(a[i]\) 是否大于等于 \(l\) 以及 \(f[i]+i\) 是否不超过 \(p\) 即可。

空间复杂度 \(O(2944730)\) ,时间复杂度 \(O(\mathrm{I \ don't\ know})\)

#include<bits/stdc++.h>
using namespace std;

template <class T> inline void read(T &x) {
	x = 0; bool flag = 0; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == 45) flag = 1;
	for (; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48; if (flag) x = -x;
}

#define N 2944731
#define rep(i, a, b) for (int i = a; i <= b; i++)
#define ll long long

int l, r, p, pri[101], cnt, n, a[N], f[N];
bool b[N];
bool notPri[101];

void getNum(int x, int k) {
	a[++n] = x;
	rep(j, k, cnt) if ((ll)x * pri[j] <= r) getNum(x * pri[j], j); else return;
}

int main() {
//	freopen("calculetor.in", "r", stdin);
//	freopen("calculetor.out", "w", stdout); 
	read(l), read(r), read(p);
	rep(i, 2, p - 1) {
		if (!notPri[i]) pri[++cnt] = i;
		rep(j, 1, cnt) {
			if (i * pri[j] >= p) break;
			notPri[i * pri[j]] = 1;
			if (!(i % pri[j])) break;
		}
	}
	getNum(1, 1); sort(a + 1, a + 1 + n);
	memset(f, 0x3f, sizeof f); f[1] = 0;
	rep(i, 2, p - 1) {
		int k = 1;
		rep(j, 1, n) if (!(a[j] % i)) {
			while (a[k] * i < a[j]) k++;
			if ((f[j]  = min(f[j], f[k] + 1)) + i <= p) b[j] = 1;
		}
	}
	int ans = 0; rep(i, 1, n) if (b[i] && a[i] >= l) ans++;
	printf("%d", ans);
	return 0;
}
posted @ 2018-07-21 20:03  aziint  阅读(305)  评论(1编辑  收藏  举报
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.