bzoj3993 [SDOI2015]星际战争

Description

\(3333\) 年,在银河系的某星球上, X军团和Y军团正在激烈地作战。在战斗的某一阶段,Y军团一共派遣了 \(N\) 个巨型机器人进攻X军团的阵地,其中第i个巨型机器人的装甲值为 \(A_i\) 。当一个巨型机器人的装甲值减少到 \(0\) 或者以下时,这个巨型机器人就被摧毁了。X军团有 \(M\) 个激光武器,其中第 \(i\) 个激光武器每秒可以削减一个巨型机器人 \(B_i\) 的装甲值。激光武器的攻击是连续的。这种激光武器非常奇怪,一个激光武器只能攻击一些特定的敌人。Y军团看到自己的巨型机器人被X军团一个一个消灭,他们急需下达更多的指令。为了这个目标,Y军团需要知道X军团最少需要用多长时间才能将Y军团的所有巨型机器人摧毁。但是他们不会计算这个问题,因此向你求助。

Input

第一行,两个整数, \(N,M\)
第二行,\(N\) 个整数,\(A_1,A_2…A_N\)
第三行,\(M\) 个整数,\(B_1,B_2…B_M\)
接下来的 \(M\) 行,每行 \(N\) 个整数,这些整数均为 \(0\) 或者 \(1\) 。这部分中的第 \(i\) 行的第 \(j\) 个整数为 \(0\) 表示第 \(i\) 个激光武器不可以攻击第 \(j\) 个巨型机器人,为 \(1\) 表示第 \(i\) 个激光武器可以攻击第 \(j\) 个巨型机器人。

Output

一行,一个实数,表示X军团要摧毁Y军团的所有巨型机器人最少需要的时间。输出结果与标准答案的绝对误差不超过 \(10^{-3}\) 即视为正确。

Sample Input

2 2
3 10
4 6
0 1
1 1

Sample Output

1.300000

HINT

对于全部的数据,\(1\le N, M\le 50,1\le A_i\le 10^5,1\le B_i\le 1000\) ,输入数据保证X军团一定能摧毁Y军团的所有巨型机器人

Solution

azi只会做傻逼题
二分+最大流
每次二分一个答案 \(x\) ,如下重新建图:

  • \(S\) 往每个武器连边,流量为 \(x\times B_i\)
  • 每个怪兽往 \(T\) 连边,流量为 \(A_i\)
  • 如果武器 \(i\) 可以攻击怪兽 \(j\)\(i\)\(j\) 连边,流量为 \(INF\)
#include<bits/stdc++.h>
using namespace std;

#define N 1000
#define eps (1e-9)
#define INF (1e9)
#define rep(i, a, b) for (int i = a; i <= b; i++)
#define lb long double
 
inline int read() {
	int x = 0, flag = 1; char ch = getchar(); while (!isdigit(ch)) { if (!(ch ^ '-')) flag = -1; ch = getchar(); }
	while (isdigit(ch)) x = (x << 1) + (x << 3) + ch - '0', ch = getchar(); return x * flag;
}

inline void write(int x) {
	if (!x) { putchar('0'); return; } if (x < 0) putchar('-'), x = -x;
	char buf[20] = ""; int top = 0; while (x) buf[++top] = x % 10 + '0', x /= 10; while (top) putchar(buf[top--]);
}

int n, m;
int A[N], B[N], sum;
struct edge { int v, next; lb c; }e[1000005];
int head[N], tot, S, T;
bool Map[N][N];
int dep[N], q[N];

inline void add(int u, int v, lb c) {
	e[++tot] = edge{ v, head[u], c }; head[u] = tot;
	e[++tot] = edge{ u, head[v], 0 }; head[v] = tot;
}

inline bool bfs() {
	int l = 1, r = 1;
	memset(dep, 0, sizeof dep); q[r] = S, dep[S] = 1;
	while (l <= r) {
		int u = q[l++];
		for (int i = head[u]; i; i = e[i].next) {
			int v = e[i].v; lb c = e[i].c;
			if (c < eps || dep[v]) continue;
			dep[v] = dep[u] + 1, q[++r] = v;
			if (v == T) return 1;
		}
	}
	return 0;
}

double dfs(int u, lb dis) {
	if (!(u ^ T) || dis < eps) return dis;
	for (int i = head[u]; i; i = e[i].next) {
		int v = e[i].v; lb c = e[i].c;
		if ((dep[v] ^ dep[u] + 1) || c < eps) continue;
		lb d = dfs(v, min(dis, c));
		if (d < eps) continue;
		e[i].c -= d, e[i ^ 1].c += d;
		return d;
	}
	return 0.0;
}

bool check(lb x) {
	memset(head, 0, sizeof head); tot = 1;
	rep(i, 1, m) add(S, i, x * B[i]);
	rep(i, 1, n) add(i + m, T, A[i]);
	rep(i, 1, m) rep(j, 1, n) if (Map[i][j]) add(i, j + m, INF);
	lb ans = 0.0;
	while (bfs()) ans += dfs(S, INF);
	return fabs(ans - sum) < eps;
}

int main() {
	scanf("%d%d", &n, &m); T = n + m + 1;
	rep(i, 1, n) A[i] = read(), sum += A[i];
	rep(i, 1, m) B[i] = read();
	rep(i, 1, m) rep(j, 1, n) Map[i][j] = read();
	lb l = 0.0, r = sum * 1.0;
	while (l + 1e-4 < r) { lb mid = (l + r) / 2; if (check(mid)) r = mid; else l = mid; }
	printf("%.4lf", (double)l);
	return 0;
}
posted @ 2018-02-05 10:25  aziint  阅读(128)  评论(0编辑  收藏  举报
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.