Unique Paths II
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
思路:这道题与Unique Paths思路差不多,就是初始化和运算的过程中要判断obstacleGrid[i][j]为1和0的情况,当obstacleGrid[i][j]为1时,result[i][j]=0,当obstacleGride[i][j]为0时,这个时候情况完全与Unique Paths的情况一样了。
class Solution { public: int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) { int m=obstacleGrid.size(); if(m==0) return 0; int n=obstacleGrid[0].size(); if(n==0) return 0; int result[m][n]; if(obstacleGrid[0][0]==0) result[0][0]=1; else result[0][0]=0; for(int i=1;i<m;i++) { if(obstacleGrid[i][0]==0) result[i][0]=result[i-1][0]; else result[i][0]=0; } for(int i=1;i<n;i++) { if(obstacleGrid[0][i]==0) result[0][i]=result[0][i-1]; else result[0][i]=0; } for(int i=1;i<m;i++) { for(int j=1;j<n;j++) { if(obstacleGrid[i][j]==0) result[i][j]=result[i-1][j]+result[i][j-1]; else result[i][j]=0; } } return result[m-1][n-1]; } };