LeetCode: Largest Rectangle in Histogram(直方图最大面积)
http://blog.csdn.net/abcbc/article/details/8943485
具体的题目描述为:
Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.
Above is a histogram where width of each bar is 1, given height =[2,1,5,6,2,3]
.
The largest rectangle is shown in the shaded area, which has area =10
unit.
For example,
Given height = [2,1,5,6,2,3]
,
return 10
.
这道题可以有两个解法。
解法一是穷举法,对于直方图的每一个右边界,穷举所有的左边界。将面积最大的那个值记录下来。时间复杂度为O(n^2). 单纯的穷举在LeetCode上面过大集合时会超时。可以通过选择合适的右边界,做一个剪枝(Pruning)。观察发现当height[k] >= height[k - 1]时,无论左边界是什么值,选择height[k]总会比选择height[k - 1]所形成的面积大。因此,在选择右边界的时候,首先找到一个height[k] < height[k - 1]的k,然后取k - 1作为右边界,穷举所有左边界,找最大面积。
Java代码:
1 // O(n^2) with pruning 2 public int largestRectangleArea1(int[] height) { 3 // Start typing your Java solution below 4 // DO NOT write main() function 5 int area = 0; 6 for (int i = 0; i < height.length; i++) { 7 for (int k = i + 1; k < height.length; k++) { 8 if (height[k] < height[k - 1]) { 9 i = k - 1; 10 break; 11 } else { 12 i = k; 13 } 14 } 15 int lowest = height[i]; 16 for (int j = i; j >= 0; j--) { 17 if (height[j] < lowest) { 18 lowest = height[j]; 19 } 20 int currArea = (i - j + 1) * lowest; 21 if (currArea > area) { 22 area = currArea; 23 } 24 } 25 } 26 return area; 27 }
虽然上面的解法可以过大集合,但是不是最优的方法,下面介绍使用栈的优化解法。时间复杂度为O(n).
此解法的核心思想为:一次性计算连续递增的区间的最大面积,并且考虑完成这个区间之后,考虑其前、后区间的时候,不会受到任何影响。也就是这个连续递增区间的最小高度大于等于其前、后区间。
这个方法非常巧妙,最好通过一个图来理解:
假设输入直方图为:int[] height = {2,7,5,6,4}.
这个方法运行的时候,当遇到height[2] == 5的时候,发现其比之前一个高度小,则从当前值(5)开始,向左搜索比当前值小的值。当搜索到最左边(2)时,比5小,此时计算在height[0]和height[2]之间的最大面积,注意不包括height[0]和和height[2]。height[1]以红色标出的这个区域就被计算完成。同样的方法,计算出绿色和粉色的面积。
因此这个方法需要使用两个栈。第一个栈为高度栈heightStack,用于记录还没有被计算过的连续递增的序列的值。第二个栈为下标栈indexStack,用于记录高度栈中对应的每一个高度的下标,以计算宽度。
算法具体执行的步骤为:
若heightStack为空或者当前高度大于heightStack栈顶,则当前高度和当前下标分别入站(下面有一个解法可以只用一个栈即可,用栈来保存下标,而高度由下标很容易得到)。所以heightStack记录了一个连续递增的序列。
若当前高度小于heightStack栈顶,heightStack和indexStack出栈,直到当前高度大于等于heightStack栈顶。出栈时,同时计算区间所形成的最大面积。注意计算完之后,当前值入栈的时候,其对应的下标应该为最后一个从indexStack出栈的下标。比如height[2]入栈时,其对应下标入栈应该为1,而不是其本身的下标2。如果将其本身下标2入栈,则计算绿色区域的最大面积时,会忽略掉红色区域。
C++代码:
class Solution { public: int largestRectangleArea(vector<int> &height) { if(height.size() == 0) return 0; int res = 0; vector<int> tmp = height; tmp.push_back(0); // Important stack<int> s; for(int i = 0; i < tmp.size(); i++) { if(s.empty() || (!s.empty() && tmp[i] >= tmp[s.top()])) s.push(i); else{ while(!s.empty() && tmp[s.top()] > tmp[i]) { int idx = s.top(); s.pop(); int width = s.empty() ? i : (i-s.top()-1); res = max(res, tmp[idx] * width); } s.push(i); // Important } } return res; } };
Java代码:
// O(n) using two stacks public int largestRectangleArea(int[] height) { // Start typing your Java solution below // DO NOT write main() function int area = 0; java.util.Stack<Integer> heightStack = new java.util.Stack<Integer>(); java.util.Stack<Integer> indexStack = new java.util.Stack<Integer>(); for (int i = 0; i < height.length; i++) { if (heightStack.empty() || heightStack.peek() <= height[i]) { heightStack.push(height[i]); indexStack.push(i); } else if (heightStack.peek() > height[i]) { int j = 0; while (!heightStack.empty() && heightStack.peek() > height[i]) { j = indexStack.pop(); int currArea = (i - j) * heightStack.pop(); if (currArea > area) { area = currArea; } } heightStack.push(height[i]); indexStack.push(j); } } while (!heightStack.empty()) { int currArea = (height.length - indexStack.pop()) * heightStack.pop(); if (currArea > area) { area = currArea; } } return area; }
更新:
在网上发现另外一个使用一个栈的O(n)解法,代码非常简洁,栈内存储的是高度递增的下标。对于每一个直方图高度,分两种情况。1:当栈空或者当前高度大于栈顶下标所指示的高度时,当前下标入栈。否则,2:当前栈顶出栈,并且用这个下标所指示的高度计算面积。而这个方法为什么只需要一个栈呢?因为当第二种情况时,for循环的循环下标回退,也就让下一次for循环比较当前高度与新的栈顶下标所指示的高度,注意此时的栈顶已经改变由于之前的出栈。
Java代码:
// O(n) using one stack public int largestRectangleArea(int[] height) { // Start typing your Java solution below // DO NOT write main() function int area = 0; java.util.Stack<Integer> stack = new java.util.Stack<Integer>(); for (int i = 0; i < height.length; i++) { if (stack.empty() || height[stack.peek()] < height[i]) { stack.push(i); } else { int start = stack.pop(); int width = stack.empty() ? i : i - stack.peek() - 1; area = Math.max(area, height[start] * width); i--; } } while (!stack.empty()) { int start = stack.pop(); int width = stack.empty() ? height.length : height.length - stack.peek() - 1; area = Math.max(area, height[start] * width); } return area; }
你问我生命中还有什么可追寻?