【构造】Tinkoff Challenge - Final Round (Codeforces Round #414, rated, Div. 1 + Div. 2) D. Labelling Cities
考试的时候想的是,将所有的完全子图缩起来,然后如果剩下的是一条链,依次对其进行标号即可。
看了官方题解,发现完全子图这个条件太强了,缩点的条件仅仅需要保证原本两个点的“邻接表”相同即可。(注意这里的“邻接表”需要把其自身也放进去)
自己构造一下,发现这个比较容易理解。
被缩在一起的点的标号相同。如果缩完是一条链,对其依次进行标号。否则无解。
复杂度发现比较鬼畜,但是想一下就会知道其不会太高。官方说可以证明是。
#include<cstdio> #include<vector> #include<set> #include<algorithm> using namespace std; int n,m,xs[300010],ys[300010]; struct data{ int id; vector<int>ljb; }nodes[300010]; bool cmp(const data &a,const data &b){ return a.ljb<b.ljb; } int bel[300010],nn,col[300010],du[300010]; set<pair<int,int> >S; vector<int>G[300010]; int pen; void dfs(int U){ col[U]=++pen; for(int i=0;i<G[U].size();++i){ if(!col[G[U][i]]){ dfs(G[U][i]); } } } int main(){ // freopen("d.in","r",stdin); scanf("%d%d",&n,&m); for(int i=1;i<=m;++i){ scanf("%d%d",&xs[i],&ys[i]); nodes[xs[i]].ljb.push_back(ys[i]); nodes[ys[i]].ljb.push_back(xs[i]); } for(int i=1;i<=n;++i){ nodes[i].id=i; nodes[i].ljb.push_back(i); sort(nodes[i].ljb.begin(),nodes[i].ljb.end()); } sort(nodes+1,nodes+n+1,cmp); int sta; for(int i=1;i<=n;++i){ if(nodes[i].ljb!=nodes[i-1].ljb){ sta=i; } if(nodes[i].ljb!=nodes[i+1].ljb){ ++nn; for(int j=sta;j<=i;++j){ bel[nodes[j].id]=nn; } } } for(int i=1;i<=m;++i){ if(bel[xs[i]]!=bel[ys[i]]){ if(S.find(make_pair(bel[xs[i]],bel[ys[i]]))==S.end() && S.find(make_pair(bel[ys[i]],bel[xs[i]]))==S.end()){ S.insert(make_pair(bel[xs[i]],bel[ys[i]])); S.insert(make_pair(bel[ys[i]],bel[xs[i]])); G[bel[xs[i]]].push_back(bel[ys[i]]); G[bel[ys[i]]].push_back(bel[xs[i]]); ++du[bel[xs[i]]]; ++du[bel[ys[i]]]; } } } int cnt=0; for(int i=1;i<=nn;++i){ if(du[i]==1){ ++cnt; } else if(du[i]>2){ puts("NO"); return 0; } } if(cnt==2 || (nn==1 && cnt==0)){ for(int i=1;i<=nn;++i){ if(du[i]==1 || du[i]==0){ dfs(i); break; } } puts("YES"); for(int i=1;i<n;++i){ printf("%d ",col[bel[i]]); } printf("%d\n",col[bel[n]]); } else{ puts("NO"); } return 0; }
——The Solution By AutSky_JadeK From UESTC
转载请注明出处:http://www.cnblogs.com/autsky-jadek/