test20181017 B君的第一题
题意
分析
考场做法
对p的幂打表发现,我们一定可以把x和y的二进制位从低到高依次调整成0。
具体而言,从0次幂开始每两个分为一组a,b,那么0,a,b,a+b组合中的一种可以将x,y的对应二进制位都调整成0。
然后模拟一下就行了。
时间复杂度\(O(\log |x| + \log |y|)\)
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<string>
#include<vector>
#include<list>
#include<deque>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<complex>
#define rg register
#define il inline
#define co const
#pragma GCC optimize ("O0")
using namespace std;
template<class T> il T read(T&x)
{
T data=0;
int w=1;
char ch=getchar();
while(!isdigit(ch))
{
if(ch=='-')
w=-1;
ch=getchar();
}
while(isdigit(ch))
data=10*data+ch-'0',ch=getchar();
return x=data*w;
}
typedef long long ll;
const int INF=0x7fffffff;
const complex<ll>p(-1,-1);
const int MAXN=1000;
int S[MAXN],cnt;
int main()
{
freopen("guangzhou.in","r",stdin);
freopen("guangzhou.out","w",stdout);
ll x,y;
read(x);read(y);
complex<ll>a(1,0),b(-1,-1),t;
for(int i = 0;x || y;++i,(a *= p) *= p,(b *= p) *= p)
{
// cerr<<"i="<<i<<endl;
// cerr<<"a="<<a<<" b="<<b<<endl;
t = 0;
if( (x & (1LL << i)) == (t.real() & (1LL << i)) && (y & (1LL << i)) == (t.imag() & (1LL << i)) )
{
// cerr<<" case 1"<<endl;
continue;
}
t = a;
if( (x & (1LL << i)) == (t.real() & (1LL << i)) && (y & (1LL << i)) == (t.imag() & (1LL << i)) )
{
// cerr<<" case 2"<<endl;
x -= t.real() ,y -= t.imag();
S[++cnt] = 2 * i;
continue;
}
t = b;
if( (x & (1LL << i)) == (t.real() & (1LL << i)) && (y & (1LL << i)) == (t.imag() & (1LL << i)) )
{
// cerr<<" case 3"<<endl;
x -= t.real() ,y -= t.imag();
S[++cnt] = 2 * i + 1;
continue;
}
t = a + b;
if( (x & (1LL << i)) == (t.real() & (1LL << i)) && (y & (1LL << i)) == (t.imag() & (1LL << i)) )
{
// cerr<<" case 4"<<endl;
x -= t.real() ,y -= t.imag();
S[++cnt] = 2 * i;
S[++cnt] = 2 * i + 1;
continue;
}
}
printf("%d\n",cnt);
for(int i=1;i<=cnt;++i)
{
printf("%d\n",S[i]);
}
// fclose(stdin);
// fclose(stdout);
return 0;
}
标解
跟冬令营2017亿兆京垓 (Radixphi)这道题有关。
像确定二进制一样,每次右移,然后判断最后一位的奇偶,这题可以每次/p,然后判断实部和虚部的和的奇偶。
高斯整数一定能表示成\(-1 \pm i\)进制的形式,这是B君翻维基百科上翻到的。然后就被出成题了。
时间复杂度\(O(\log |x| + \log |y|)\)。
#include <bits/stdc++.h>
using namespace std;
complex<long long> n, p, u;
long long x, y;
int a[200], c, i;
int main() {
freopen("guangzhou.in", "r", stdin);
freopen("guangzhou.out", "w", stdout);
cin >> x >> y;
n = complex<long long>(x, y);
p = complex<long long>(-1, -1);
while (n != complex<long long>(0, 0)) {
if ((n.real() + n.imag()) % 2 != 0) {
a[c++] = i;
n -= complex<long long>(1, 0);
}
n /= p;
i++;
}
printf("%d\n", c);
for (int i = 0; i < c; i++) {
printf("%d\n", a[i]);
}
return 0;
}
静渊以有谋,疏通而知事。