JSOI2018 绝地反击

绝地反击

\(n\) 个点 \((x_i, y_i)\),你要把它们移动到一个半径为 \(R\),圆心为原点的单位圆上,使得相邻两个点距离相同(即一个正 \(n\) 边形,每个顶点距离原点的距离都是 R)。最小化最大移动距离。

\(3 ≤ n ≤ 200\)

题解

https://www.cnblogs.com/hiweibolu/p/9048012.html

这道题的精髓在于两点:

  1. 枚举匹配可以每次旋转至卡着一段圆弧的边界。

  2. 网络流边数变化不大,所以可以暴力退流。

https://www.cnblogs.com/Paul-Guderian/p/10410257.html

CO int N=400+10,inf=1e9;
namespace flow{
	int n,S,T;
	struct edge {int v,c,a;};
	vector<edge> to[N];
	int dis[N];

	void init(int n){
		flow::n=n,S=n-1,T=n;
		for(int i=1;i<=n;++i) to[i].clear();
	}
	IN void link(int u,int v,int c){
		to[u].push_back({v,c}),to[v].push_back({u,0});
		to[u].back().a=to[v].size()-1,to[v].back().a=to[u].size()-1;
	}
	bool bfs(){
		fill(dis+1,dis+n+1,inf),dis[T]=0;
		deque<int> Q={T};
		while(Q.size()){
			int u=Q.front();Q.pop_front();
			for(CO edge&e:to[u])if(to[e.v][e.a].c)
				if(dis[e.v]>dis[u]+1) dis[e.v]=dis[u]+1,Q.push_back(e.v);
		}
		return dis[S]<inf;
	}
	int dfs(int u,int lim){
		if(u==T) return lim;
		int rest=lim;
		for(edge&e:to[u])if(e.c and dis[e.v]==dis[u]-1){
			int delta=dfs(e.v,min(e.c,rest));
			if(!delta) {dis[e.v]=inf;continue;}
			rest-=delta,e.c-=delta,to[e.v][e.a].c+=delta;
			if(!rest) break;
		}
		return lim-rest;
	}
	int erase(int u,int v){
		bool flag=0;
		for(edge&e:to[u])if(e.v==v){
			if(e.c) flag=1;
			e.c=to[e.v][e.a].c=0;
			break;
		}
		if(flag) return 0;
		for(edge&e:to[S])if(e.v==u){
			e.c=1,to[e.v][e.a].c=0;
			break;
		}
		for(edge&e:to[v])if(e.v==T){
			e.c=1,to[e.v][e.a].c=0;
			break;
		}
		return -1;
	}
}

CO float128 pi=acos(-1),eps=1e-9;
int n;float128 R,B;
struct point {float128 x,y;}p[N];
struct event {float128 ang;int u,v,o;}q[N];

bool check(float128 M){
	flow::init(2*n+2);
	int tot=0;
	for(int i=1;i<=n;++i){
		float128 D=sqrt(p[i].x*p[i].x+p[i].y*p[i].y)+eps; // edit 1: /0
		if(M+D<=R or M+R<=D) return 0; // disjoint
		if(R+D<=M){ // contain
			for(int j=1;j<=n;++j) flow::link(i,j+n,1);
			continue;
		}
		float128 ang=atan2(p[i].y,p[i].x);
		float128 del=acos((D*D+R*R-M*M)/(2*D*R)); // edit 1: /0
		float128 ang1=ang-del,ang2=ang+del;
		while(ang1<0) ang1+=2*pi;
		while(ang2<0) ang2+=2*pi;
		int l=ang1/B,r=ang2/B; // no coincidence
		ang1=ang1-l*B,ang2=ang2-r*B;
		++l,++r; // convert to index
		q[++tot]={ang1,i,l,1},q[++tot]={ang2,i,r,-1};
		if(l<=r){
			for(int j=l+1;j<=r;++j) flow::link(i,j+n,1);
		}
		else{
			for(int j=1;j<=r;++j) flow::link(i,j+n,1);
			for(int j=l+1;j<=n;++j) flow::link(i,j+n,1);
		}
	}
	for(int i=1;i<=n;++i) flow::link(flow::S,i,1),flow::link(i+n,flow::T,1);
	int ans=0;
	while(flow::bfs()) ans+=flow::dfs(flow::S,inf);
	if(ans==n) return 1;
	sort(q+1,q+tot+1,[](CO event&a,CO event&b)->bool{
		return a.ang!=b.ang?a.ang<b.ang:a.o>b.o;
	});
	for(int i=1;i<=tot;++i){
		if(q[i].o==1) flow::link(q[i].u,q[i].v+n,1);
		else ans+=flow::erase(q[i].u,q[i].v+n);
		while(flow::bfs()) ans+=flow::dfs(flow::S,inf);
		if(ans==n) return 1;
	}
	return 0;
}
int main(){
	read(n),scanf("%Lf",&R);
	B=2*pi/n;
	for(int i=1;i<=n;++i) scanf("%Lf%Lf",&p[i].x,&p[i].y);
	float128 l=0,r=200;
	while(r-l>eps){
		float128 mid=(l+r)/2;
		if(check(mid)) r=mid;
		else l=mid;
	}
	printf("%.9Lf\n",r);
	return 0;
}

posted on 2020-01-15 08:05  autoint  阅读(186)  评论(0编辑  收藏  举报

导航