NOIP2018 旅行 和 赛道修建

填很久以前的坑。

旅行

给一棵 n 个点的基环树,求字典序最小的DFS序。

n ≤ 5000

题解

O(n2) 做法非常显然,枚举断掉环上哪条边然后贪心即可。当然我去年的骚操作只能得88分。

O(n log n) 做法,推荐duoluoluo的博客。

环上要删的边是固定的,我们在环上走的时候,只有当其出边连向的点中,环上点编号最大,且比回溯到父亲后第一个走的点还大,这时候才回溯,其他时候就正常跑DFS。

#include<bits/stdc++.h>
using namespace std;
template<class T> T read(){
	T x=0,w=1;char c=getchar();
	for(;!isdigit(c);c=getchar())if(c=='-') w=-w;
	for(;isdigit(c);c=getchar()) x=x*10+c-'0';
	return x*w;
}
template<class T> T read(T&x){
	return x=read<T>();
}
#define co const
#define il inline
typedef long long LL;

co int N=500000+10;
int n,m;
struct edge {int x,y;}eg[N*2];
il bool operator<(co edge&a,co edge&b){
	return a.y<b.y;
}
vector<int> to[N];

namespace T1{
	int vis[N],ans[N],num;
	
	void dfs(int x){
		vis[x]=1,ans[++num]=x;
		for(int i=0;i<(int)to[x].size();++i){
			int y=to[x][i];
			if(!vis[y]) dfs(y);
		}
	}
	void main(){
		dfs(1);
		for(int i=1;i<=n;++i) printf("%d ",ans[i]);
	}
}

namespace T2{
	int circle,f[N],rings[N];
	int vis[N],ans[N],num;
	int comp,recur;
	
	void dfs_ring(int x,int fa){
		if(circle) return;
		if(!f[x]) f[x]=fa;
		else if(f[x]!=fa){
			for(;fa!=x;fa=f[fa]) rings[fa]=1;
			rings[x]=1,circle=1;
			return;
		}
		for(int i=0;i<(int)to[x].size();++i){
			int y=to[x][i];
			if(y==fa) continue;
			dfs_ring(y,x);
		}
	}
	void dfs_ans(int x){
		vis[x]=1,ans[++num]=x;
		if(!rings[x]){
			for(int i=0;i<(int)to[x].size();++i){
				int y=to[x][i];
				if(vis[y]) continue;
				dfs_ans(y);
			}
			return;
		}
		int found=0;
		for(int i=0;i<(int)to[x].size();++i){
			if(recur) break;
			int y=to[x][i];
			if(vis[y]) continue;
			if(rings[y]){
				int j=i+1;
				while(j<(int)to[x].size() and vis[to[x][j]]) ++j;
				if(j<(int)to[x].size()) comp=to[x][j];
				else if(y>comp) found=1,recur=1;
				break;
			}
		}
		for(int i=0;i<(int)to[x].size();++i){
			int y=to[x][i];
			if(vis[y]) continue;
			if(rings[y] and found) continue;
			dfs_ans(y);
		}
	}
	void main(){
		dfs_ring(1,1);
		comp=INT_MAX,dfs_ans(1);
		for(int i=1;i<=n;++i) printf("%d ",ans[i]);
	}
}

int main(){
	read(n),read(m);
	for(int i=1;i<=m;++i){
		int x=read<int>(),y=read<int>();
		eg[2*i-1]=(edge){x,y},eg[2*i]=(edge){y,x};
	}
	sort(eg+1,eg+2*m+1);
	for(int i=1;i<=2*m;++i) to[eg[i].x].push_back(eg[i].y);
	if(m==n-1) T1::main();
	else T2::main();
	return 0;
}

赛道修建

给一棵 n 个点带权无向树,要求找出 m 条不相交的简单路径,使得路径长度最小值最大。

n ≤ 50000

题解

二分答案判可行性。推荐owencodeisking的博客。

对于每个结点,把所有传上来的值 val 放进一个 multiset ,其实这些值对答案有贡献就两种情况:

  1. val≥k
  2. vala+valb≥k

那么第一种情况可以不用放进 multiset,直接答案 +1 就好了。第二种情况就可以对于每一个最小的元素,在 multiset 中找到第一个 ≥k的数,将两个数同时删去,最后把剩下最大的值传到那个结点的父亲

我出考场后想为什么这种解法是正确的,有没有可能对于有些情况直接传最大的数会使答案更大?

当然不会。这个数即使很大也只能对答案贡献加 1,在其没传上去的时候可以跟原来结点的值配对,也只能对答案贡献加 1。

时间复杂度 O(n log2 n)。

#include<bits/stdc++.h>
using namespace std;
template<class T> T read(){
	T x=0,w=1;char c=getchar();
	for(;!isdigit(c);c=getchar())if(c=='-') w=-w;
	for(;isdigit(c);c=getchar()) x=x*10+c-'0';
	return x*w;
}
template<class T> T read(T&x){
	return x=read<T>();
}
#define co const
#define il inline
typedef long long LL;

co int N=50000+10;
vector<int> to[N],we[N];
int diameter;

int pretreat(int x,int fa){
	int maxd=0;
	for(int i=0;i<(int)to[x].size();++i){
		int y=to[x][i];
		if(y==fa) continue;
		int len=pretreat(y,x)+we[x][i];
		diameter=max(diameter,maxd+len);
		maxd=max(maxd,len);
	}
	return maxd;
}

int ans;
multiset<int> s[N];
typedef multiset<int>::iterator iter;

int dfs(int x,int fa,int k){
	s[x].clear();
	for(int i=0;i<(int)to[x].size();++i){
		int y=to[x][i];
		if(y==fa) continue;
		int val=dfs(y,x,k)+we[x][i];
		if(val>=k) ++ans;
		else s[x].insert(val);
	}
	int len=0;
	while(s[x].size()){
		if(s[x].size()==1) return max(len,*s[x].begin());
		iter i=s[x].lower_bound(k-*s[x].begin());
		if(i==s[x].begin() and s[x].count(*i)==1) ++i;
		if(i==s[x].end()){
			len=max(len,*s[x].begin());
			s[x].erase(s[x].begin());
		}
		else{
			++ans;
			s[x].erase(s[x].begin()),s[x].erase(s[x].find(*i)); // edit 1: find
		}
	}
	return len;
}
int check(int k){
	ans=0;
	dfs(1,0,k);
	return ans;
}

int main(){
//	freopen("testdata.in","r",stdin);
	int n=read<int>(),m=read<int>();
	for(int i=1;i<n;++i){
		int x=read<int>(),y=read<int>(),w=read<int>();
		to[x].push_back(y),we[x].push_back(w);
		to[y].push_back(x),we[y].push_back(w);
	}
	pretreat(1,0);
	int l=1,r=diameter;
	while(l<r){
//		cerr<<"l="<<l<<" r="<<r<<endl;
		int mid=(l+r+1)>>1;
		check(mid)>=m?l=mid:r=mid-1;
	}
	printf("%d\n",l);
	return 0;
}

posted on 2019-10-02 21:05  autoint  阅读(102)  评论(0编辑  收藏  举报

导航