[NOI2015]程序自动分析
题意
题目描述
在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足。
考虑一个约束满足问题的简化版本:假设x1,x2,x3...代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变量相等/不等的约束条件,请判定是否可以分别为每一个变量赋予恰当的值,使得上述所有约束条件同时被满足。例如,一个问题中的约束条件为:x1=x2,x2=x3,x3=x4,x4≠x1,这些约束条件显然是不可能同时被满足的,因此这个问题应判定为不可被满足。
现在给出一些约束满足问题,请分别对它们进行判定。
输入输出格式
输入格式:从文件prog.in中读入数据。
输入文件的第1行包含1个正整数t,表示需要判定的问题个数。注意这些问题之间是相互独立的。
对于每个问题,包含若干行:
第1行包含1个正整数n,表示该问题中需要被满足的约束条件个数。接下来n行,每行包括3个整数i,j,e,描述1个相等/不等的约束条件,相邻整数之间用单个空格隔开。若e=1,则该约束条件为xi=xj;若�e=0,则该约束条件为xi≠xj;
输出格式:输出到文件 prog.out 中。
输出文件包括t行。
输出文件的第 k行输出一个字符串“ YES” 或者“ NO”(不包含引号,字母全部大写),“ YES” 表示输入中的第k个问题判定为可以被满足,“ NO” 表示不可被满足。
输入输出样例
说明
【样例解释1】
在第一个问题中,约束条件为:x1=x2,x1≠x2。这两个约束条件互相矛盾,因此不可被同时满足。
在第二个问题中,约束条件为:x1=x2,x1=x2。这两个约束条件是等价的,可以被同时满足。
【样例说明2】
在第一个问题中,约束条件有三个:x1=x2,x2=x3,x3=x1。只需赋值使得x1=x1=x1,即可同时满足所有的约束条件。
在第二个问题中,约束条件有四个:x1=x2,x2=x3,x3=x4,x4≠x1。由前三个约束条件可以推出x1=x2=x3=x4,然而最后一个约束条件却要求x1≠x4,因此不可被满足。
【数据范围】
【时限2s,内存512M】
分析
离散化后,先处理相等的,用并查集。再看看不等的是否位于同一并查集中即可。
时间复杂度\(O(n \log n)\)
#include<bits/stdc++.h>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;rg char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') w=-1;ch=getchar();}
while(isdigit(ch)) data=data*10+ch-'0',ch=getchar();
return data*w;
}
template<class T>il T read(rg T&x) {return x=read<T>();}
typedef long long ll;
using namespace std;
co int N=1e5+1;
int n,m,a[N*2],fa[N*2];
struct P{
int i,j;
bool e;
}p[N];
int get(int x) {return fa[x]==x?x:fa[x]=get(fa[x]);}
int find(int x) {return lower_bound(a+1,a+m+1,x)-a;}
void cxzdfx(){
read(n);
for(int i=1;i<=n;++i){
read(p[i].i),read(p[i].j),read(p[i].e);
a[2*i-1]=p[i].i,a[2*i]=p[i].j;
}
sort(a+1,a+2*n+1),m=unique(a+1,a+2*n+1)-(a+1);
for(int i=1;i<=m;++i) fa[i]=i;
for(int i=1;i<=n;++i)
if(p[i].e) fa[get(find(p[i].i))]=get(find(p[i].j));
for(int i=1;i<=n;++i)
if(!p[i].e&&get(find(p[i].i))==get(find(p[i].j)))
return puts("NO"),void();
puts("YES");
}
int main(){
// freopen(".in","r",stdin),freopen(".out","w",stdout);
int kase=read<int>();
while(kase--) cxzdfx();
return 0;
}