Gym100365H Peaks 和 CH3401 石头游戏

Peaks

求n个排列中有恰好k个峰的方案数,模239

n<=1015,k<=30

题解

\(f(i,j)\) 表示填了 \(1~ i\)\(j\) 个峰的方案数。

那么 \(2j\cdot f(i,j) \rightarrow f(i+1,j)\)\((i+1-2j)\cdot f(i,j) \rightarrow f(i+1,j+1)\)

于是转移可以写成矩阵形式。考虑系数 \(i+1-2j\) 怎么处理。发现由于模数很小,所以可以利用矩阵的周期性。

k和模数的大小提示找规律,事实上当 \(k\leq 30\) 时,\(f(n,k)=f(n+56882,k)~(\bmod 239)\)

CO int mod=239;
int f[56882][31];

int main(){
	int n=read<LL>()%56882,k=read<int>();
	f[1][1]=1;
	for(int i=1;i<=n;++i)
		for(int j=1;j<=k;++j)if(f[i][j]){
			f[i+1][j]=(f[i+1][j]+2*j*f[i][j])%mod;
			f[i+1][j+1]=(f[i+1][j+1]+(i+1-2*j)*f[i][j])%mod;
		}
	printf("%d\n",f[n][k]);
	return 0;
}

描述

石头游戏在一个 n 行 m 列 (1≤n,m≤8) 的网格上进行,每个格子对应一种操作序列,操作序列至多有10种,分别用0~9这10个数字指明。
操作序列是一个长度不超过6且循环执行、每秒执行一个字符的字符串。每秒钟,所有格子同时执行各自操作序列里的下一个字符。序列中的每个字符是以下格式之一:
  • 数字0~9:表示拿0~9个石头到该格子。
  • NWSE:表示把这个格子内所有的石头推到相邻的格子,N表示上方,W表示左方,S表示下方,E表示右方。
  • D:表示拿走这个格子的所有石头。
给定每种操作序列对应的字符串,以及网格中每个格子对应的操作序列,求石头游戏进行了 t 秒之后,石头最多的格子里有多少个石头。在游戏开始时,网格是空的。

输入格式

第一行4个整数n, m, t, act。
接下来n行,每行m个字符,表示每个格子对应的操作序列。
最后act行,每行一个字符串,表示从0开始的每个操作序列。

输出格式

一个整数:游戏进行了t秒之后,所有方格中最多的格子有多少个石头。

样例输入

1 6 10 3
011112
1E
E
0

样例输出

3

样例解释

这是另一个类似于传送带的结构。左边的设备0间隔地产生石头并向东传送。设备1向右传送,直到设备2。10秒后,总共产生了5个石头,2个在传送带上,3个在最右边。

分析

由于\(\le 6\)的正整数的公倍数是60,所以每60秒操作序列一定会循环。那么考虑矩阵转移,预处理每秒转移矩阵和60秒的转移矩阵乘积,对\(\lfloor \frac{t}{60} \rfloor\)做60秒的,\(t \bmod 60\)做单秒的。为了新增石头,增加一个节点来提供。

时间复杂度\(O(60^3(\log \lfloor \frac{t}{60} \rfloor+t \bmod 60))\)

#include<bits/stdc++.h>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
	rg T data=0,w=1;
	rg char ch=getchar();
	while(!isdigit(ch)){
		if(ch=='-') w=-1;
		ch=getchar();
	}
	while(isdigit(ch))
		data=data*10+ch-'0',ch=getchar();
	return data*w;
}
template<class T>il T read(rg T&x){
	return x=read<T>();
}
typedef long long ll;

ll f[70],d[70][70],e[70][70][70];
char b[20][20],s[100];
int n,m,t,act,p,a[20][20],c[20][20];
int num(int i,int j){
	return (i-1)*m+j;
}
void mulself(ll a[70][70],ll b[70][70]){
	static ll w[70][70];
	memset(w,0,sizeof w);
	for(int i=1;i<=p;++i)
		for(int k=1;k<=p;++k) if(a[i][k])
			for(int j=1;j<=p;++j)
				w[i][j]+=a[i][k]*b[k][j];
	memcpy(a,w,sizeof w);
}
void mul(ll a[70],ll b[70][70]){
	static ll w[70];
	memset(w,0,sizeof w);
	for(int i=1;i<=p;++i)
		for(int j=1;j<=p;++j)
			w[i]+=a[j]*b[j][i];
	memcpy(a,w,sizeof w);
}
int main(){
//	freopen(".in","r",stdin),freopen(".out","w",stdout);
	read(n),read(m),read(t),read(act);
	for(int i=1;i<=n;++i){
		scanf("%s",s+1);
		for(int j=1;j<=m;++j) a[i][j]=s[j]-'0'+1;
	}
	for(int i=1;i<=act;++i) scanf("%s",b[i]);
	p=n*m+1;
	for(int k=1;k<=60;++k){
		for(int i=1;i<=n;++i)
			for(int j=1;j<=m;++j){
				int x=a[i][j],y=c[i][j];
				if(isdigit(b[x][y])){
					e[k][p][num(i,j)]=b[x][y]-'0';
					e[k][num(i,j)][num(i,j)]=1;
				}
				else if(b[x][y]=='N'&&i>1) e[k][num(i,j)][num(i-1,j)]=1;
				else if(b[x][y]=='W'&&j>1) e[k][num(i,j)][num(i,j-1)]=1;
				else if(b[x][y]=='S'&&i<n) e[k][num(i,j)][num(i+1,j)]=1;
				else if(b[x][y]=='E'&&j<m) e[k][num(i,j)][num(i,j+1)]=1;
				c[i][j]=(y+1)%strlen(b[x]);
			}
		e[k][p][p]=1;
	}
	memcpy(d,e[1],sizeof e[1]);
	for(int k=2;k<=60;++k) mulself(d,e[k]);
	f[p]=1;
	for(int w=t/60;w;w>>=1){
		if(w&1) mul(f,d);
		mulself(d,d);
	}
	for(int w=t%60,i=1;i<=w;++i) mul(f,e[i]);
	ll ans=0;
	for(int i=1;i<p;++i) ans=std::max(ans,f[i]);
	printf("%lld\n",ans);
	return 0;
}

posted on 2019-10-14 20:57  autoint  阅读(235)  评论(0编辑  收藏  举报

导航