BZOJ4260,LOJ10051 Nikitosh 和异或
题意
给定一个含 \(N\) 个元素的数组 \(A\),下标从 \(1\) 开始。请找出下面式子的最大值:\((A[l_1]\bigoplus A[l_1+1]\bigoplus …\bigoplus A[r_1])+ (A[l_2]\bigoplus A[l_2+1]^…\bigoplus A[r_2])\),其中 \(1\le l_1\le r_1<l_2\le r_2\le N,x\bigoplus y\)表示 \(x\) 和 \(y\) 的按位异或。
对于 \(100\%\) 的数据,\(2\le N \le 4\times 10^5, 0\le A_i\le 10^9\)。
分析
参照qwerta的题解。
首先记录异或前缀和s[i]=a[1]⊕a[2]⊕a[3]...⊕a[i]。
设l[i]为以i结尾的区间中,异或值的最大值。
因为异或有 x⊕x=0 的性质,所以区间 [l,r] 的异或值
=a[l]⊕a[l+1]⊕...⊕a[r]
=(a[1]⊕a[2]⊕a[3]...⊕a[l−1])⊕(a[1]⊕a[2]⊕a[3]...⊕a[r])
=s[l−1]⊕s[r],
所以求l[i],转化为找j<i,使得s[j]⊕s[i]最大。
转化为「LOJ#10050」「一本通 2.3 例 2」The XOR Largest Pair(Trie
以相似的方法可以求出r[i](以i开头的区间中,异或值的最大值)。
时间复杂度:O(N \log_2 A)。
代码
#include<bits/stdc++.h>
#define rg register
#define il inline
#define co const
template<class T>il T read()
{
rg T data=0,w=1;
rg char ch=getchar();
while(!isdigit(ch))
{
if(ch=='-') w=-1;
ch=getchar();
}
while(isdigit(ch))
{
data=data*10+ch-'0';
ch=getchar();
}
return data*w;
}
template<class T>il T read(rg T&x)
{
return x=read<T>();
}
typedef long long ll;
using namespace std;
co int N=4e5+1;
int a[N],l[N],r[N];
int bin[31];
void turn(int x)
{
for(int i=0;i<31;++i,x>>=1)
bin[i]=x&1;
}
int tot,ch[N*31][2];
int find()
{
int u=0,res=0;
for(int i=30;i>=0;--i)
{
if(ch[u][bin[i]^1])
res+=(1<<i),u=ch[u][bin[i]^1];
else
u=ch[u][bin[i]];
}
return res;
}
void insert()
{
int u=0;
for(int i=30;i>=0;--i)
{
if(!ch[u][bin[i]])
ch[u][bin[i]]=++tot;
u=ch[u][bin[i]];
}
}
int main()
{
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
int n=read<int>();
for(int i=1;i<=n;++i)
read(a[i]);
int x=0;
for(int i=1;i<=n;++i)
{
x^=a[i];
turn(x);
insert();
l[i]=max(l[i-1],find());
// cerr<<i<<" l="<<l[i]<<endl;
}
x=0,tot=0;
memset(ch,0,sizeof ch);
for(int i=n;i>=1;--i)
{
x^=a[i];
turn(x);
insert();
r[i]=max(r[i+1],find());
// cerr<<i<<" r="<<r[i]<<endl;
}
ll ans=0;
for(int i=1;i<n;++i)
ans=max(ans,(ll)l[i]+r[i+1]);
printf("%lld\n",ans);
return 0;
}
静渊以有谋,疏通而知事。