随笔分类 -  AI-人工智能:笔记

摘要:https://blog.csdn.net/weixin_42398658/article/details/84639391 https://blog.csdn.net/qq_31050167/article/details/79161077 https://pan.baidu.com/s/1VQa 阅读全文
posted @ 2019-03-14 23:07 Augustone 阅读(159) 评论(0) 推荐(0) 编辑
摘要:1,introduction Estimator 会封装下列操作: 训练 评估 预测 导出以供使用 预创建的 Estimator,也可以编写自定义 Estimator。所有 Estimator(无论是预创建的还是自定义)都是基于 tf.estimator.Estimator 类的类 2,Estima 阅读全文
posted @ 2019-03-12 22:36 Augustone 阅读(387) 评论(0) 推荐(0) 编辑
摘要:1,tf-data两个新的抽象类 dataset表示一系列元素,其中每个元素包含一个或多个 Tensor 对象 创建来源(例如 Dataset.from_tensor_slices()),以通过一个或多个 tf.Tensor 对象构建数据集。 应用转换(例如 Dataset.batch()),以通过 阅读全文
posted @ 2019-03-12 22:23 Augustone 阅读(1442) 评论(0) 推荐(0) 编辑
摘要:1,Goodness An intuitive interface—Structure your code naturally and use Python data structures. Quickly iterate on small models and small data. Easier 阅读全文
posted @ 2019-03-12 18:59 Augustone 阅读(260) 评论(0) 推荐(0) 编辑
摘要:1,Sequential model model = tf.keras.Sequential() # Adds a densely-connected layer with 64 units to the model:model.add(layers.Dense(64, activation='re 阅读全文
posted @ 2019-03-12 18:25 Augustone 阅读(359) 评论(0) 推荐(0) 编辑
摘要:1,获取数据 imdb = keras.datasets.imdb(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000) 2,查看处理变形数据 2.1,查看 print(train_ 阅读全文
posted @ 2019-03-11 20:48 Augustone 阅读(1469) 评论(0) 推荐(0) 编辑
摘要:1,数据集下载 2,一系列数据检查 这一条特别 3,Create feature columns and input functions,特征列和输入函数 3.1,one-hot-encoding, normalization, and bucketization 3.2,数字型和分类型 fc = 阅读全文
posted @ 2019-03-11 20:43 Augustone 阅读(788) 评论(0) 推荐(0) 编辑
摘要:1,机器学习的基本步骤 Import and parse the data sets. Select the type of model. Train the model. Evaluate the model's effectiveness. Use the trained model to ma 阅读全文
posted @ 2019-03-11 16:22 Augustone 阅读(1162) 评论(0) 推荐(0) 编辑
摘要:1,一般描述 we saw that the accuracy of our model on the validation data would peak after training for a number of epochs, and would then start decreasing. 阅读全文
posted @ 2019-03-10 22:51 Augustone 阅读(1436) 评论(0) 推荐(0) 编辑
摘要:1,tf.layers基础函数 conv2d(). Constructs a two-dimensional convolutional layer. Takes number of filters, filter kernel size, padding, and activation funct 阅读全文
posted @ 2019-03-10 22:23 Augustone 阅读(406) 评论(0) 推荐(0) 编辑
摘要:1,以类的方式定义一个模型 class Model(object): def __init__(self): # Initialize variable to (5.0, 0.0) # In practice, these should be initialized to random values 阅读全文
posted @ 2019-03-10 21:29 Augustone 阅读(190) 评论(0) 推荐(0) 编辑
摘要:1,share的内容 code to create the model, and the trained weights, or parameters, for the model 2,ways There are different ways to save TensorFlow models—d 阅读全文
posted @ 2019-03-10 21:10 Augustone 阅读(3844) 评论(0) 推荐(0) 编辑
摘要:1,dataset的方法 Dataset.make_one_shot_iterator() or get_next() 2,使用python的方法-当eager mode enabled时 print('Elements of ds_tensors:')for x in ds_tensors: pr 阅读全文
posted @ 2019-03-10 20:34 Augustone 阅读(611) 评论(0) 推荐(0) 编辑
摘要:map, batch, shuffle 阅读全文
posted @ 2019-03-10 20:31 Augustone 阅读(149) 评论(0) 推荐(0) 编辑
摘要:1,几种方法 Create a source dataset using one of the factory functions like Dataset.from_tensors, Dataset.from_tensor_slices or using objects that read fro 阅读全文
posted @ 2019-03-10 20:29 Augustone 阅读(1462) 评论(0) 推荐(0) 编辑
摘要:1,tensor的特点 Tensors can be backed by accelerator memory (like GPU, TPU). Tensors are immutable 2,双向转换 TensorFlow operations automatically convert NumP 阅读全文
posted @ 2019-03-10 20:25 Augustone 阅读(1339) 评论(0) 推荐(0) 编辑
摘要:1, def get_flat_weights(model): weight_names = [ name for name in model.get_variable_names() if "linear_model" in name and "Ftrl" not in name] weight_ 阅读全文
posted @ 2019-03-10 17:46 Augustone 阅读(332) 评论(0) 推荐(0) 编辑
摘要:1, model_l1 = tf.estimator.LinearClassifier( feature_columns=base_columns + crossed_columns, optimizer=tf.train.FtrlOptimizer( learning_rate=0.1, l1_r 阅读全文
posted @ 2019-03-10 17:40 Augustone 阅读(510) 评论(0) 推荐(0) 编辑
摘要:1,数字类型的 education_num = tf.feature_column.numeric_column('education_num')capital_gain = tf.feature_column.numeric_column('capital_gain')capital_loss = 阅读全文
posted @ 2019-03-10 17:33 Augustone 阅读(1763) 评论(0) 推荐(0) 编辑
摘要:1,简单数pandas import pandas train_df = pandas.read_csv(train_file, header = None, names = census_dataset._CSV_COLUMNS)test_df = pandas.read_csv(test_fil 阅读全文
posted @ 2019-03-10 17:04 Augustone 阅读(960) 评论(1) 推荐(0) 编辑

点击右上角即可分享
微信分享提示