Atitit 数据挖掘技术体系 目录 1. 统计分析(分组聚合等 1 2. Tag标注 结构化 1 2.1. · 复杂数据类型挖掘(Text, Web 2 2.2. ,图形图像,视频,音频等) 2
Atitit 数据挖掘技术体系
目录
Tag扩展
聚类(Clustering)
聚类是对记录分组,把相似的记录在一个聚集里。聚类和分类的区别是聚集不依赖于预先定义好的类,不需要训练集。
例子:
a. 一些特定症状的聚集可能预示了一个特定的疾病
b. 租VCD类型不相似的客户聚集,可能暗示成员属于不同的亚文化群
聚集通常作为数据挖掘的第一步。例如,"哪一种类的促销对客户响应最好?",对于这一 类问题,首先对整个客户做聚集,将客户分组在各自的聚集里,然后对每个不同的聚集,回答问题,可能效果更好。
Atitit.数据挖掘的原理与理论架构attilax总结 v3 t88.docx