K-means算法应用:图片压缩
from sklearn.datasets import load_sample_image import matplotlib.pyplot as plt from sklearn.cluster import KMeans import numpy as np flower=load_sample_image('flower.jpg')#原始图片 plt.imshow(flower) plt.show() image=flower[::3,::3]#降低原始图片的分辨率 plt.imshow(image) plt.show() #利用Kmeans对图片进行压缩 x=image.reshape(-1,3)#改变数组的形状 n_colors=64 model=KMeans(n_colors) labels=model.fit_predict(x) colors=model.cluster_centers_ new_image=colors[labels] new_image=new_image.reshape(image.shape) plt.imshow(new_image.astype(np.uint8)) plt.show()
#原始图片与新图片所占用内存的大小 import sys print(sys.getsizeof(flower)) print(sys.getsizeof(new_image)) #原始图片与新图片保存成文件 import matplotlib.image as img img.imsave("F:\\flower.jpg",flower) img.imsave("F:\\flower_zip.jpg",image)