【贪心】均分纸牌
时间限制: 1 Sec 内存限制: 64 MB题目描述
有N堆纸牌,编号分别为1,2,…,N。每堆上有若干张,但纸牌总数必为N的倍数。可以在任一堆上取若干张纸牌,然后移动。 移牌规则为:在编号为1堆上取的纸牌,只能移到编号为2的堆上;在编号为N的堆上取的纸牌,只能移到编号为N-1的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。 现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。 例如 N=4,4堆纸牌数分别为: ① 9 ② 8 ③ 17 ④ 6 移动3次可达到目的: 从③ 取4张牌放到④ (9 8 13 10)-> 从③ 取3张牌放到② (9 11 10 10)->从② 取1张牌放到① (10 10 10 10)。
输入
输入文件中包括两行数据。 第一行为N堆纸牌数(1<=N<=100)。 第二行为N堆纸牌中每堆纸牌初始数A1,A2,…,An(l<=Ai<=10000)。
输出
输出文件中仅一行,即所有堆均达到相等时的最少移动次数。
样例输入
4
9 8 17 6
样例输出
3
1 #include <iostream> 2 3 using namespace std; 4 int n; 5 int a[111]; 6 int sum,t; 7 int avg; 8 int main() 9 { 10 11 while(cin>>n) 12 { 13 sum=0;t=0; 14 for(int i=0;i<n;i++) 15 { 16 cin>>a[i]; 17 sum+=a[i]; 18 } 19 avg=sum/n; 20 for(int i=0;i<n;i++) 21 { 22 if(a[i]!=avg) 23 { 24 a[i+1]-=avg-a[i]; 25 t++; 26 } 27 } 28 cout<<t<<endl; 29 } 30 return 0; 31 }