uoj33 【UR #2】树上GCD
大致是长剖+\(\rm dsu\ on\ tree\)的思想
先做一个转化,改为对于\(i\in[1,n-1]\)求出有多少个\(f(u,v)\)满足\(i|f(u,v)\),最后再容斥一下。
既然我们要求有多少对\(f(u,v)\)是\(i\)或\(i\)的倍数,我们需要在长剖的时候快速合并两边的信息。
要实现快速合并,需要知道到当前节点距离为\(i\)或\(i\)的倍数的节点个数。
对于轻儿子,可以暴力调和级数处理一下即可,对于长儿子,进行根号分治。
-
\(x>\sqrt{n}\),也就是直接暴力从重儿子那里暴力复杂度是\(\frac{n}{x}<\sqrt{n}\),这样我们自然可以直接利用长剖时维护的数组得到
-
\(x\leq \sqrt{n}\)时,考虑维护 \(g(x,i)\) 表示一个点子树内部点深度对\(x\)取模余数为\(i\)的点的个数,我们需要的即 \(g(x,dep_u\%x)\) 。
考虑 \(g(x,i)\) 的计算,对于长儿子,可以直接继承。轻儿子,将每个深度暴力合并,每次合并的复杂度是 \(O(\sqrt{n})\) 的。
注意,在 DFS 的过程中只维护这一个 \(g\) ,所以需要采用类似 \(\rm dsu\ on\ tree\) 的思想,在一条长链的顶端进行清空。
还需要注意顺序,长剖都是先重儿子再轻儿子,但是\(\rm dsu\)却是先轻儿子再重儿子。
这里为了保证\(g\)里维护的信息都来自于子树内部,我们必须得像\(\rm dsu\)一样先轻儿子之后处理重儿子
代码
#include<bits/stdc++.h>
#define re register
#define LL long long
#define min(a,b) ((a)<(b)?(a):(b))
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
const int maxn=2e5+5;
struct E{int v,nxt;}e[maxn];
int n,num,__,B;
int head[maxn],son[maxn],len[maxn],dep[maxn],f[maxn],mu[maxn],p[maxn>>1];
int h[maxn],top[maxn],dfn[maxn],g[320][320],b[maxn],c[maxn];
LL ans[maxn],Ans[maxn];
inline void add(int x,int y) {
e[++num].v=y;e[num].nxt=head[x];head[x]=num;
}
void dfs1(int x) {
for(re int i=head[x];i;i=e[i].nxt) {
dep[e[i].v]=dep[x]+1;dfs1(e[i].v);
if(len[e[i].v]>len[son[x]]) son[x]=e[i].v;
}
len[x]=len[son[x]]+1;
}
void dfs2(int x,int topf) {
top[x]=topf,dfn[x]=++__;
if(!son[x]) return;
dfs2(son[x],topf);
for(re int i=head[x];i;i=e[i].nxt)
if(son[x]!=e[i].v) dfs2(e[i].v,e[i].v);
}
inline void ins(int x,int v) {
for(re int i=1;i<=B;++i) g[i][x%i]+=v;
}
inline int calc(int x,int k) {
if(k<=B) return g[k][dep[x]%k];
int tot=0;
for(re int i=dfn[x]+k;i<=dfn[x]+len[x]-1;i+=k) tot+=h[i];
return tot;
}
void dfs(int x) {
for(re int i=head[x];i;i=e[i].nxt)
if(son[x]!=e[i].v) dfs(e[i].v);
if(son[x]) dfs(son[x]);
for(re int i=head[x];i;i=e[i].nxt) {
if(son[x]==e[i].v) continue;
int y=e[i].v;
for(re int j=1;j<=len[y];++j)
b[j]=h[dfn[y]+j-1];
for(re int j=1;j<=len[y];++j)
for(re int k=j;k<=len[y];k+=j) c[j]+=b[k];
for(re int j=1;j<=len[y];++j)
ans[j]+=1ll*c[j]*calc(x,j);
for(re int j=1;j<=len[y];++j) c[j]=b[j]=0;
for(re int j=1;j<=len[y];++j)
ins(j+dep[y]-1,h[dfn[y]+j-1]),h[dfn[x]+j]+=h[dfn[y]+j-1];
}
ins(dep[x],1);h[dfn[x]]++;
if(x==top[x]) {
for(re int i=1;i<=B;++i)
for(re int j=dep[x];j<=dep[x]+len[x]-1;++j)
g[i][j%i]=0;
}
}
int main() {
n=read();
for(re int x,i=2;i<=n;++i) x=read(),add(x,i);
dep[1]=1,dfs1(1),dfs2(1,1);f[1]=mu[1]=1;
B=std::ceil(std::sqrt(n));B=min(B,310);dfs(1);
for(re int i=2;i<=n;i++) {
if(!f[i]) p[++p[0]]=i,mu[i]=-1;
for(re int j=1;j<=p[0]&&p[j]*i<=n;++j) {
f[p[j]*i]=1;if(i%p[j]==0) break;
mu[p[j]*i]=-mu[i];
}
}
for(re int i=1;i<=n;i++)
for(re int j=i;j<=n;j+=i)
Ans[i]+=1ll*mu[j/i]*ans[j];
for(re int i=2;i<=n;++i)
c[1]++,c[dep[i]]--;
for(re int i=1;i<=n;i++) c[i]+=c[i-1];
for(re int i=1;i<n;i++) printf("%lld\n",Ans[i]+c[i]);
return 0;
}