【51nod 1355】 斐波那契数的最小公倍数
51nod的数学题都还不错啊
首先直接算显然是没有办法算的,因为\(fib\)的lcm这个东西还是太鬼畜了
我们考虑到\(fib\)数列的一个非常好的性质是\(gcd(fib_i,fib_{j})=fib_{gcd(i,j)}\),而\(gcd\)对应的是各质数次幂的最小值,\(lcm\)是各质数次幂的最大值
于是我们自然而然的想到了\(min-max\)容斥
显然答案就是
\[\prod_{T\subset S}gcd(T)^{(-1)^{|T|+1}}
\]
考虑到\(gcd(T)\)不会有超过\(Max(a_i)\)种,显然对于\(x=1,2,3...n\),我们可以求出\(gcd(T)=x\)的\(T\)有多少种
自然考虑反演,\(F(d)\)表示有多个子集的\(gcd\)是\(d\)或\(d\)的倍数,\(F\)显然很好求的样子
反演就得到了
\[f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d)=\sum_{n|d}\mu(\frac{d}{n})(2^{\sum_{i=1}^n[d|a_i]}-1)
\]
由于\(min-max\)容斥有那个\((-1)^{|T|+1}\)我们得按照集合大小的奇偶性分别讨论
对于\(F\)和\(f\)我们都能在\(O(nlgn)\)的时间内求出来了
最后答案就是\(\prod_{i=1}^{Max(a_i)}fib_{i}^{f(i)}\)
代码
#include<cstdio>
#define re register
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
const int mod=1000000007;
const int maxn=1e6+5;
int p[maxn>>1],f[maxn],mu[maxn],n,a[50005],g[maxn],vis[maxn],h[maxn];
int pw[50005],T,fib[maxn],ans=1;
inline int ksm(int a,int b) {
int S=1;for(;b;b>>=1,a=1ll*a*a%mod) if(b&1) S=1ll*S*a%mod;return S;
}
int main() {
n=read();
for(re int i=1;i<=n;i++)
a[i]=read(),T=max(T,a[i]),vis[a[i]]++;
f[1]=mu[1]=1;
for(re int i=2;i<=T;i++) {
if(!f[i]) p[++p[0]]=i,mu[i]=-1;
for(re int j=1;j<=p[0]&&p[j]*i<=T;j++) {
f[p[j]*i]=1;if(i%p[j]==0) break;mu[p[j]*i]=-1*mu[i];
}
}
for(re int i=1;i<=T;i++)
for(re int j=i;j<=T;j+=i) g[i]+=vis[j];
pw[0]=1;fib[1]=1;
for(re int i=2;i<=T;i++) fib[i]=(fib[i-1]+fib[i-2])%mod;
for(re int i=1;i<=n;i++) pw[i]=(pw[i-1]+pw[i-1])%(mod-1);
for(re int i=1;i<=T;i++)
for(re int j=i;j<=T;j+=i)
if(g[j]) h[i]=(h[i]+mu[j/i]*pw[g[j]-1])%(mod-1),h[i]=(h[i]-mu[j/i]*(pw[g[j]-1]-1))%(mod-1);
for(re int i=1;i<=T;i++) h[i]=(h[i]+mod-1)%(mod-1);
for(re int i=1;i<=T;i++) {
if(!h[i]) continue;
ans=1ll*ans*ksm(fib[i],h[i])%mod;
}
printf("%d\n",ans);
return 0;
}