[Jsoi2015]染色问题

题目

看到这个限制条件有点多,我们就一直容斥好了

先容斥颜色,我们枚举至少不用\(i\)种颜色

再容斥列,我们枚举至少不用\(j\)

最后容斥行,枚举至少不用\(k\)

容斥系数显然是\((-1)^i,(-1)^j,(-1)^k\),我们从\(c\)种颜色里选出\(i\)种不用,\(m\)列里选出\(j\)列不凃,\(n\)行里选出\(k\)行不凃,分别是\(\binom{c}{i},\binom{m}{j},\binom{n}{k}\)

对于剩下的\((m-j)(n-k)\)个格子,每个格子我们有\(c-i\)种颜色可以涂,或者直接空着,所以有\(c-i+1\)种选择

于是我们的答案就是

\[\sum_{i=0}^c\sum_{j=0}^m\sum_{k=0}^n(-1)^{i+j+k}\binom{c}{i}\binom{m}{j}\binom{n}{k}\times (c-i+1)^{(m-j)(n-k)} \]

里面用快速幂算那个东西会\(T\)的,我们乱搞一下就能优化成\(O(nmc)\)

代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register
#define LL long long
inline int read() {
	char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
	while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
const int mod=1e9+7;
const int maxn=405;
int n,m,c;
int fac[maxn],inv[maxn],ifac[maxn];
inline int C(int n,int m) {
	if(m>n) return 0;
	return 1ll*fac[n]*ifac[n-m]%mod*ifac[m]%mod;
}
inline int ksm(int a,int b) {
	int S=1;
	while(b) {if(b&1) S=1ll*S*a%mod;b>>=1;a=1ll*a*a%mod;}
	return S;
}
int main() {
	n=read(),m=read(),c=read();
	inv[1]=1,fac[0]=1,ifac[0]=1;
	for(re int i=1;i<=400;i++) fac[i]=1ll*fac[i-1]*i%mod;
	for(re int i=2;i<=400;i++) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
	for(re int i=1;i<=400;i++) ifac[i]=1ll*ifac[i-1]*inv[i]%mod;
	int ans=0;
	for(re int i=0;i<=c;i++)
		for(re int j=0;j<=m;j++) {
			int now=1,t=ksm(c-i+1,m-j);
			for(re int k=n;k>=0;--k) {
				int tot=1ll*C(c,i)*C(m,j)%mod*C(n,k)%mod*now%mod;
				if((i+j+k)&1) ans=(ans-tot+mod)%mod;
					else ans=(ans+tot)%mod;
				now=1ll*now*t%mod;
			}
		}
	printf("%d\n",ans);
	return 0;
}
posted @ 2019-04-26 17:32  asuldb  阅读(263)  评论(1编辑  收藏  举报