kafka 基础知识梳理-kafka是一种高吞吐量的分布式发布订阅消息系统

一、kafka 简介

今社会各种应用系统诸如商业、社交、搜索、浏览等像信息工厂一样不断的生产出各种信息,在大数据时代,我们面临如下几个挑战:

  1. 如何收集这些巨大的信息
  2. 如何分析它
  3. 如何及时做到如上两点

以上几个挑战形成了一个业务需求模型,即生产者生产(produce)各种信息,消费者消费(consume)(处理分析)这些信息,而在生产者与消费者之间,需要一个沟通两者的桥梁-消息系统。从一个微观层面来说,这种需求也可理解为不同的系统之间如何传递消息。       

kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。这种动作(网页浏览,搜索和其他用户的行动)是在现代网络上的许多社会功能的一个关键因素。这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来解决。 

Apache kafka 它具备快速、可扩展、可持久化的特点。它现在是Apache旗下的一个开源系统,作为hadoop生态系统的一部分,被各种商业公司广泛应用。它的最大的特性就是可以实时的处理大量数据以满足各种需求场景:比如基于hadoop的批处理系统、低延迟的实时系统、storm/spark流式处理引擎。

     1.1 Kafka的特性

  • 高吞吐量、低延迟:kafka每秒可以处理几十万条消息,它的延迟最低只有几毫秒
  • 可扩展性:kafka集群支持热扩展
  • 持久性、可靠性:消息被持久化到本地磁盘,并且支持数据备份防止数据丢失
  • 容错性:允许集群中节点失败(若副本数量为n,则允许n-1个节点失败)
  • 高并发:支持数千个客户端同时读写

2.2 Kafka一些重要设计思想

下面介绍先大体介绍一下Kafka的主要设计思想,可以让相关人员在短时间内了解到kafka相关特性,如果想深入研究,后面会对其中每一个特性都做详细介绍。

  • Consumergroup:各个consumer可以组成一个组,每个消息只能被组中的一个consumer消费,如果一个消息可以被多个consumer消费的话,那么这些consumer必须在不同的组。
  • 消息状态:在Kafka中,消息的状态被保存在consumer中,broker不会关心哪个消息被消费了被谁消费了,只记录一个offset值(指向partition中下一个要被消费的消息位置),这就意味着如果consumer处理不好的话,broker上的一个消息可能会被消费多次。
  • 消息持久化:Kafka中会把消息持久化到本地文件系统中,并且保持极高的效率。
  • 消息有效期:Kafka会长久保留其中的消息,以便consumer可以多次消费,当然其中很多细节是可配置的。
  • 批量发送:Kafka支持以消息集合为单位进行批量发送,以提高push效率。
  • push-and-pull : Kafka中的Producer和consumer采用的是push-and-pull模式,即Producer只管向broker push消息,consumer只管从broker pull消息,两者对消息的生产和消费是异步的。
  • Kafka集群中broker之间的关系:不是主从关系,各个broker在集群中地位一样,我们可以随意的增加或删除任何一个broker节点。
  • 负载均衡方面: Kafka提供了一个 metadata API来管理broker之间的负载(对Kafka0.8.x而言,对于0.7.x主要靠zookeeper来实现负载均衡)。
  • 同步异步:Producer采用异步push方式,极大提高Kafka系统的吞吐率(可以通过参数控制是采用同步还是异步方式)。
  • 分区机制partition:Kafka的broker端支持消息分区,Producer可以决定把消息发到哪个分区,在一个分区中消息的顺序就是Producer发送消息的顺序,一个主题中可以有多个分区,具体分区的数量是可配置的。分区的意义很重大,后面的内容会逐渐体现。
  • 离线数据装载:Kafka由于对可拓展的数据持久化的支持,它也非常适合向Hadoop或者数据仓库中进行数据装载。
  • 插件支持:现在不少活跃的社区已经开发出不少插件来拓展Kafka的功能,如用来配合Storm、Hadoop、flume相关的插件。

2.3 kafka 应用场景

  • 日志收集:一个公司可以用Kafka可以收集各种服务的log,通过kafka以统一接口服务的方式开放给各种consumer,例如hadoop、Hbase、Solr等。
  • 消息系统:解耦和生产者和消费者、缓存消息等。
  • 用户活动跟踪:Kafka经常被用来记录web用户或者app用户的各种活动,如浏览网页、搜索、点击等活动,这些活动信息被各个服务器发布到kafka的topic中,然后订阅者通过订阅这些topic来做实时的监控分析,或者装载到hadoop、数据仓库中做离线分析和挖掘。
  • 运营指标:Kafka也经常用来记录运营监控数据。包括收集各种分布式应用的数据,生产各种操作的集中反馈,比如报警和报告。
  • 流式处理:比如spark streaming和storm
  • 事件源

2.4 Kafka架构组件

客户端和服务端通过TCP协议通信。Kafka提供了Java客户端,并且对多种语言都提供了支持。

Kafka中发布订阅的对象是topic。我们可以为每类数据创建一个topic,把向topic发布消息的客户端称作producer,从topic订阅消息的客户端称作consumer。Producers和consumers可以同时从多个topic读写数据。一个kafka集群由一个或多个broker服务器组成,它负责持久化和备份具体的kafka消息。producers通过网络将消息发送到Kafka集群,集群向消费者提供消息 

  • topic:消息存放的目录即主题
  • Producer:生产消息到topic的一方
  • Consumer:订阅topic消费消息的一方
  • Broker:Kafka的服务实例就是一个broker

2.5 Kafka Topic&Partition

消息发送时都被发送到一个topic,其本质就是一个目录,而topic由是由一些Partition Logs(分区日志)组成,其组织结构如下图所示:

我们可以看到,每个Partition中的消息都是有序的,生产的消息被不断追加到Partition log上,其中的每一个消息都被赋予了一个唯一的offset值。 
Kafka集群会保存所有的消息,不管消息有没有被消费;我们可以设定消息的过期时间,只有过期的数据才会被自动清除以释放磁盘空间。比如我们设置消息过期时间为2天,那么这2天内的所有消息都会被保存到集群中,数据只有超过了两天才会被清除。 
Kafka需要维持的元数据只有一个–消费消息在Partition中的offset值,Consumer每消费一个消息,offset就会加1。其实消息的状态完全是由Consumer控制的,Consumer可以跟踪和重设这个offset值,这样的话Consumer就可以读取任意位置的消息。 
把消息日志以Partition的形式存放有多重考虑,第一,方便在集群中扩展,每个Partition可以通过调整以适应它所在的机器,而一个topic又可以有多个Partition组成,因此整个集群就可以适应任意大小的数据了;第二就是可以提高并发,因为可以以Partition为单位读写了。

1.1 kafka名词解释

  • producer:生产者。
  • consumer:消费者。
  • topic: 消息以topic为类别记录,Kafka将消息种子(Feed)分门别类,每一类的消息称之为一个主题(Topic)。
  • broker:以集群的方式运行,可以由一个或多个服务组成,每个服务叫做一个broker;消费者可以订阅一个或多个主题(topic),并从Broker拉数据,从而消费这些已发布的消息。

      每个消息(也叫作record记录,也被称为消息)是由一个key,一个value和时间戳构成。

1.2 kafka有四个核心API介绍

  • 应用程序使用producer API发布消息到1个或多个topic中。
  • 应用程序使用consumer API来订阅一个或多个topic,并处理产生的消息。
  • 应用程序使用streams API充当一个流处理器,从1个或多个topic消费输入流,并产生一个输出流到1个或多个topic,有效地将输入流转换到输出流。
  • connector API允许构建或运行可重复使用的生产者或消费者,将topic链接到现有的应用程序或数据系统。 

1.3 kafka基基原理

        通常来讲,消息模型可以分为两种:队列和发布-订阅式。队列的处理方式是一组消费者从服务器读取消息,一条消息只有其中的一个消费者来处理。在发布-订阅模型中,消息被广播给所有的消费者,接收到消息的消费者都可以处理此消息。Kafka为这两种模型提供了单一的消费者抽象模型: 消费者组(consumer group)。消费者用一个消费者组名标记自己。

       一个发布在Topic上消息被分发给此消费者组中的一个消费者。假如所有的消费者都在一个组中,那么这就变成了queue模型。假如所有的消费者都在不同的组中,那么就完全变成了发布-订阅模型。更通用的, 我们可以创建一些消费者组作为逻辑上的订阅者。每个组包含数目不等的消费者,一个组内多个消费者可以用来扩展性能和容错。       

       并且,kafka能够保证生产者发送到一个特定的Topic的分区上,消息将会按照它们发送的顺序依次加入,也就是说,如果一个消息M1和M2使用相同的producer发送,M1先发送,那么M1将比M2的offset低,并且优先的出现在日志中。消费者收到的消息也是此顺序。如果一个Topic配置了复制因子(replication facto)为N,那么可以允许N-1服务器宕机而不丢失任何已经提交(committed)的消息。此特性说明kafka有比传统的消息系统更强的顺序保证。但是,相同的消费者组中不能有比分区更多的消费者,否则多出的消费者一直处于空等待,不会收到消息。

1.5 主题和日志 (Topic和Log)

先来看一下Kafka提供的一个抽象概念:topic.
一个topic是对一组消息的归纳。对每个topic,Kafka 对它的日志进行了分区

每一个分区(partition)都是一个顺序的、不可变的消息队列,并且可以持续的添加。分区中的消息都被分了一个序列号,称之为偏移量(offset),在每个分区中此偏移量都是唯一的。Kafka集群保持所有的消息,直到它们过期,无论消息是否被消费了。

在一个可配置的时间段内,Kafka集群保留所有发布的消息,不管这些消息有没有被消费。比如,如果消息的保存策略被设置为2天,那么在一个消息被发布的两天时间内,它都是可以被消费的。之后它将被丢弃以释放空间。Kafka的性能是和数据量无关的常量级的,所以保留太多的数据并不是问题。

实际上消费者所持有的仅有的元数据就是这个偏移量,也就是消费者在这个log中的位置。 这个偏移量由消费者控制:正常情况当消费者消费消息的时候,偏移量也线性的的增加。但是实际偏移量由消费者控制,消费者可以将偏移量重置为更老的一个偏移量,重新读取消息。

实际上每个consumer唯一需要维护的数据是消息在日志中的位置,也就是offset.这个offset有consumer来维护:一般情况下随着consumer不断的读取消息,这offset的值不断增加,但其实consumer可以以任意的顺序读取消息,比如它可以将offset设置成为一个旧的值来重读之前的消息。

可以看到这种设计对消费者来说操作自如, 一个消费者的操作不会影响其它消费者对此log的处理。 再说说分区。Kafka中采用分区的设计有几个目的。一是可以处理更多的消息,不受单台服务器的限制。Topic拥有多个分区意味着它可以不受限的处理更多的数据。第二,分区可以作为并行处理的单元,稍后会谈到这一点。

1.6 分布式(Distribution)

  每个分区在Kafka集群的若干服务中都有副本,这样这些持有副本的服务可以共同处理数据和请求,副本数量是可以配置的。副本使Kafka具备了容错能力。
  每个分区都由一个服务器作为“leader”,零或若干服务器作为“followers”,leader负责处理消息的读和写,followers则去复制leader.如果leader down了,followers中的一台则会自动成为leader。集群中的每个服务都会同时扮演两个角色:作为它所持有的一部分分区的leader,同时作为其他分区的followers,这样集群就会据有较好的负载均衡。     

 Log的分区被分布到集群中的多个服务器上。每个服务器处理它分到的分区。根据配置每个分区还可以复制到其它服务器作为备份容错。 每个分区有一个leader,零或多个follower。Leader处理此分区的所有的读写请求,而follower被动的复制数据。如果leader宕机,其它的一个follower会被推举为新的leader。 一台服务器可能同时是一个分区的leader,另一个分区的follower。 这样可以平衡负载,避免所有的请求都只让一台或者某几台服务器处理。

 

Producer将消息发布到它指定的topic中,并负责决定发布到哪个分区。通常简单的由负载均衡机制随机选择分区,但也可以通过特定的分区函数选择分区。使用的更多的是第二种。

 

发布消息通常有两种模式:队列模式(queuing)和发布-订阅模式(publish-subscribe)。队列模式中,consumers可以同时从服务端读取消息,每个消息只被其中一个consumer读到;发布-订阅模式中消息被广播到所有的consumer中。Consumers可以加入一个consumer 组,共同竞争一个topic,topic中的消息将被分发到组中的一个成员中。同一组中的consumer可以在不同的程序中,也可以在不同的机器上。如果所有的consumer都在一个组中,这就成为了传统的队列模式,在各consumer中实现负载均衡。如果所有的consumer都不在不同的组中,这就成为了发布-订阅模式,所有的消息都被分发到所有的consumer中。更常见的是,每个topic都有若干数量的consumer组,每个组都是一个逻辑上的“订阅者”,为了容错和更好的稳定性,每个组由若干consumer组成。这其实就是一个发布-订阅模式,只不过订阅者是个组而不是单个consumer。

 

由两个机器组成的集群拥有4个分区 (P0-P3) 2个consumer组. A组有两个consumerB组有4个

相比传统的消息系统,Kafka可以很好的保证有序性。
传统的队列在服务器上保存有序的消息,如果多个consumers同时从这个服务器消费消息,服务器就会以消息存储的顺序向consumer分发消息。虽然服务器按顺序发布消息,但是消息是被异步的分发到各consumer上,所以当消息到达时可能已经失去了原来的顺序,这意味着并发消费将导致顺序错乱。为了避免故障,这样的消息系统通常使用“专用consumer”的概念,其实就是只允许一个消费者消费消息,当然这就意味着失去了并发性。

在这方面Kafka做的更好,通过分区的概念,Kafka可以在多个consumer组并发的情况下提供较好的有序性和负载均衡。将每个分区分只分发给一个consumer组,这样一个分区就只被这个组的一个consumer消费,就可以顺序的消费这个分区的消息。因为有多个分区,依然可以在多个consumer组之间进行负载均衡。注意consumer组的数量不能多于分区的数量,也就是有多少分区就允许多少并发消费。

Kafka只能保证一个分区之内消息的有序性,在不同的分区之间是不可以的,这已经可以满足大部分应用的需求。如果需要topic中所有消息的有序性,那就只能让这个topic只有一个分区,当然也就只有一个consumer组消费它。

在深入学习Kafka之前,需要先了解topicsbrokersproducersconsumers等几个主要术语。 下面说明了主要术语的详细描述和组件。

 

在上图中,主题(topic)被配置为三个分区。 分区1(Partition 1)具有两个偏移因子01。分区2(Partition 2)具有四个偏移因子0,1,23,分区3(Partition 3)具有一个偏移因子0replica 的id与托管它的服务器的id相同。

假设,如果该主题的复制因子设置为3,则Kafka将为每个分区创建3个相同的副本,并将它们放入群集中以使其可用于其所有操作。 为了平衡集群中的负载,每个代理存储一个或多个这些分区。 多个生产者和消费者可以同时发布和检索消息。

    • Topics - 属于特定类别的消息流被称为主题(Topics),数据存储在主题中。主题分为多个分区。 对于每个主题,Kafka都保留一个分区的最小范围。 每个这样的分区都以不可变的有序顺序包含消息。 分区被实现为一组相同大小的段文件。
    • Partition - 主题可能有很多分区,所以它可以处理任意数量的数据。
    • Partition offset - 每个分区消息都有一个称为偏移量的唯一序列标识。
    • Replicas of partition - 副本只是分区的备份。 副本从不读取或写入数据。 它们用于防止数据丢失。
    • Brokers

      • 经纪人(Brokers)是简单的系统,负责维护公布的数据。 每个代理可能每个主题有零个或多个分区。 假设,如果一个主题和N个代理中有N个分区,则每个代理将有一个分区。
      • 假设某个主题中有N个分区并且N个代理(n + m)多于N个,则第一个N代理将拥有一个分区,下一个M代理将不会拥有该特定主题的任何分区。
      • 假设某个主题中有N个分区且N个代理(n-m)少于N个代理,则每个代理将拥有一个或多个分区共享。 由于经纪人之间的负载分配不均衡,不推荐这种情况。
    • Kafka Cluster - Kafka拥有多个经纪人称为Kafka集群。 Kafka集群可以在无需停机的情况下进行扩展。 这些集群用于管理消息数据的持久性和复制。

    • Producers - 生产者(Producer)是一个或多个Kafka主题的发布者。 生产者向Kafka经纪人发送数据。 每当生产者向经纪人发布消息时,经纪人只需将消息附加到最后一个段文件。 实际上,该消息将被附加到分区。 生产者也可以将消息发送到他们选择的分区。
    • Consumers - 消费者从经纪人那里读取数据。 消费者通过从经纪人处获取数据来订阅一个或多个主题并消费发布的消息。
    • Leader - Leader是负责所有分区读写的节点。 每个分区都有一台服务器充当领导者。
    • Follower - 遵循领导者(Leader)指示的节点称为追随者(Follower)。 如果领导失败,其中一个追随者将自动成为新领导。 追随者扮演正常的消费者角色,拉动消息并更新自己的数据存储。

三、Kafka 核心组件

3.1 Replications、Partitions 和Leaders

通过上面介绍的我们可以知道,kafka中的数据是持久化的并且能够容错的。Kafka允许用户为每个topic设置副本数量,副本数量决定了有几个broker来存放写入的数据。如果你的副本数量设置为3,那么一份数据就会被存放在3台不同的机器上,那么就允许有2个机器失败。一般推荐副本数量至少为2,这样就可以保证增减、重启机器时不会影响到数据消费。如果对数据持久化有更高的要求,可以把副本数量设置为3或者更多。 
Kafka中的topic是以partition的形式存放的,每一个topic都可以设置它的partition数量,Partition的数量决定了组成topic的log的数量。Producer在生产数据时,会按照一定规则(这个规则是可以自定义的)把消息发布到topic的各个partition中。上面将的副本都是以partition为单位的,不过只有一个partition的副本会被选举成leader作为读写用。 
关于如何设置partition值需要考虑的因素。一个partition只能被一个消费者消费(一个消费者可以同时消费多个partition),因此,如果设置的partition的数量小于consumer的数量,就会有消费者消费不到数据。所以,推荐partition的数量一定要大于同时运行的consumer的数量。另外一方面,建议partition的数量大于集群broker的数量,这样leader partition就可以均匀的分布在各个broker中,最终使得集群负载均衡。在Cloudera,每个topic都有上百个partition。需要注意的是,kafka需要为每个partition分配一些内存来缓存消息数据,如果partition数量越大,就要为kafka分配更大的heap space。

3.2 Producers

Producers直接发送消息到broker上的leader partition,不需要经过任何中介一系列的路由转发。为了实现这个特性,kafka集群中的每个broker都可以响应producer的请求,并返回topic的一些元信息,这些元信息包括哪些机器是存活的,topic的leader partition都在哪,现阶段哪些leader partition是可以直接被访问的。 
Producer客户端自己控制着消息被推送到哪些partition。实现的方式可以是随机分配、实现一类随机负载均衡算法,或者指定一些分区算法。Kafka提供了接口供用户实现自定义的分区,用户可以为每个消息指定一个partitionKey,通过这个key来实现一些hash分区算法。比如,把userid作为partitionkey的话,相同userid的消息将会被推送到同一个分区。 
以Batch的方式推送数据可以极大的提高处理效率,kafka Producer 可以将消息在内存中累计到一定数量后作为一个batch发送请求。Batch的数量大小可以通过Producer的参数控制,参数值可以设置为累计的消息的数量(如500条)、累计的时间间隔(如100ms)或者累计的数据大小(64KB)。通过增加batch的大小,可以减少网络请求和磁盘IO的次数,当然具体参数设置需要在效率和时效性方面做一个权衡。 
Producers可以异步的并行的向kafka发送消息,但是通常producer在发送完消息之后会得到一个future响应,返回的是offset值或者发送过程中遇到的错误。这其中有个非常重要的参数“acks”,这个参数决定了producer要求leader partition 收到确认的副本个数,如果acks设置数量为0,表示producer不会等待broker的响应,所以,producer无法知道消息是否发送成功,这样有可能会导致数据丢失,但同时,acks值为0会得到最大的系统吞吐量。 
若acks设置为1,表示producer会在leader partition收到消息时得到broker的一个确认,这样会有更好的可靠性,因为客户端会等待直到broker确认收到消息。若设置为-1,producer会在所有备份的partition收到消息时得到broker的确认,这个设置可以得到最高的可靠性保证。 
Kafka 消息有一个定长的header和变长的字节数组组成。因为kafka消息支持字节数组,也就使得kafka可以支持任何用户自定义的序列号格式或者其它已有的格式如Apache Avro、protobuf等。Kafka没有限定单个消息的大小,但我们推荐消息大小不要超过1MB,通常一般消息大小都在1~10kB之前。 

四、Kafka核心特性

4.1 压缩

我们上面已经知道了Kafka支持以集合(batch)为单位发送消息,在此基础上,Kafka还支持对消息集合进行压缩,Producer端可以通过GZIP或Snappy格式对消息集合进行压缩。Producer端进行压缩之后,在Consumer端需进行解压。压缩的好处就是减少传输的数据量,减轻对网络传输的压力,在对大数据处理上,瓶颈往往体现在网络上而不是CPU(压缩和解压会耗掉部分CPU资源)。 
那么如何区分消息是压缩的还是未压缩的呢,Kafka在消息头部添加了一个描述压缩属性字节,这个字节的后两位表示消息的压缩采用的编码,如果后两位为0,则表示消息未被压缩。

4.2消息可靠性

在消息系统中,保证消息在生产和消费过程中的可靠性是十分重要的,在实际消息传递过程中,可能会出现如下三中情况:

  • 一个消息发送失败
  • 一个消息被发送多次
  • 最理想的情况:exactly-once ,一个消息发送成功且仅发送了一次

有许多系统声称它们实现了exactly-once,但是它们其实忽略了生产者或消费者在生产和消费过程中有可能失败的情况。比如虽然一个Producer成功发送一个消息,但是消息在发送途中丢失,或者成功发送到broker,也被consumer成功取走,但是这个consumer在处理取过来的消息时失败了。 
从Producer端看:Kafka是这么处理的,当一个消息被发送后,Producer会等待broker成功接收到消息的反馈(可通过参数控制等待时间),如果消息在途中丢失或是其中一个broker挂掉,Producer会重新发送(我们知道Kafka有备份机制,可以通过参数控制是否等待所有备份节点都收到消息)。 
从Consumer端看:前面讲到过partition,broker端记录了partition中的一个offset值,这个值指向Consumer下一个即将消费message。当Consumer收到了消息,但却在处理过程中挂掉,此时Consumer可以通过这个offset值重新找到上一个消息再进行处理。Consumer还有权限控制这个offset值,对持久化到broker端的消息做任意处理。

4.3 备份机制

备份机制是Kafka0.8版本的新特性,备份机制的出现大大提高了Kafka集群的可靠性、稳定性。有了备份机制后,Kafka允许集群中的节点挂掉后而不影响整个集群工作。一个备份数量为n的集群允许n-1个节点失败。在所有备份节点中,有一个节点作为lead节点,这个节点保存了其它备份节点列表,并维持各个备份间的状体同步。下面这幅图解释了Kafka的备份机制:

4.4 Kafka高效性相关设计

4.4.1 消息的持久化

Kafka高度依赖文件系统来存储和缓存消息,一般的人认为磁盘是缓慢的,这导致人们对持久化结构具有竞争性持怀疑态度。其实,磁盘远比你想象的要快或者慢,这决定于我们如何使用磁盘。 
一个和磁盘性能有关的关键事实是:磁盘驱动器的吞吐量跟寻到延迟是相背离的,也就是所,线性写的速度远远大于随机写。比如:在一个6 7200rpm SATA RAID-5 的磁盘阵列上线性写的速度大概是600M/秒,但是随机写的速度只有100K/秒,两者相差将近6000倍。线性读写在大多数应用场景下是可以预测的,因此,操作系统利用read-ahead和write-behind技术来从大的数据块中预取数据,或者将多个逻辑上的写操作组合成一个大写物理写操作中。更多的讨论可以在ACMQueueArtical中找到,他们发现,对磁盘的线性读在有些情况下可以比内存的随机访问要快一些。 
为了补偿这个性能上的分歧,现代操作系统都会把空闲的内存用作磁盘缓存,尽管在内存回收的时候会有一点性能上的代价。所有的磁盘读写操作会在这个统一的缓存上进行。 
此外,如果我们是在JVM的基础上构建的,熟悉java内存应用管理的人应该清楚以下两件事情:

  1. 一个对象的内存消耗是非常高的,经常是所存数据的两倍或者更多。
  2. 随着堆内数据的增多,Java的垃圾回收会变得非常昂贵。

基于这些事实,利用文件系统并且依靠页缓存比维护一个内存缓存或者其他结构要好——我们至少要使得可用的缓存加倍,通过自动访问可用内存,并且通过存储更紧凑的字节结构而不是一个对象,这将有可能再次加倍。这么做的结果就是在一台32GB的机器上,如果不考虑GC惩罚,将最多有28-30GB的缓存。此外,这些缓存将会一直存在即使服务重启,然而进程内缓存需要在内存中重构(10GB缓存需要花费10分钟)或者它需要一个完全冷缓存启动(非常差的初始化性能)。它同时也简化了代码,因为现在所有的维护缓存和文件系统之间内聚的逻辑都在操作系统内部了,这使得这样做比one-off in-process attempts更加高效与准确。如果你的磁盘应用更加倾向于顺序读取,那么read-ahead在每次磁盘读取中实际上获取到这人缓存中的有用数据。 
以上这些建议了一个简单的设计:不同于维护尽可能多的内存缓存并且在需要的时候刷新到文件系统中,我们换一种思路。所有的数据不需要调用刷新程序,而是立刻将它写到一个持久化的日志中。事实上,这仅仅意味着,数据将被传输到内核页缓存中并稍后被刷新。我们可以增加一个配置项以让系统的用户来控制数据在什么时候被刷新到物理硬盘上。

4.4.2 常数时间性能保证

消息系统中持久化数据结构的设计通常是维护者一个和消费队列有关的B树或者其它能够随机存取结构的元数据信息。B树是一个很好的结构,可以用在事务型与非事务型的语义中。但是它需要一个很高的花费,尽管B树的操作需要O(logN)。通常情况下,这被认为与常数时间等价,但这对磁盘操作来说是不对的。磁盘寻道一次需要10ms,并且一次只能寻一个,因此并行化是受限的。 
直觉上来讲,一个持久化的队列可以构建在对一个文件的读和追加上,就像一般情况下的日志解决方案。尽管和B树相比,这种结构不能支持丰富的语义,但是它有一个优点,所有的操作都是常数时间,并且读写之间不会相互阻塞。这种设计具有极大的性能优势:最终系统性能和数据大小完全无关,服务器可以充分利用廉价的硬盘来提供高效的消息服务。 
事实上还有一点,磁盘空间的无限增大而不影响性能这点,意味着我们可以提供一般消息系统无法提供的特性。比如说,消息被消费后不是立马被删除,我们可以将这些消息保留一段相对比较长的时间(比如一个星期)。

4.4.3 进一步提高效率

我们已经为效率做了非常多的努力。但是有一种非常主要的应用场景是:处理Web活动数据,它的特点是数据量非常大,每一次的网页浏览都会产生大量的写操作。更进一步,我们假设每一个被发布的消息都会被至少一个consumer消费,因此我们更要怒路让消费变得更廉价。 
通过上面的介绍,我们已经解决了磁盘方面的效率问题,除此之外,在此类系统中还有两类比较低效的场景:

  • 太多小的I/O操作
  • 过多的字节拷贝

为了减少大量小I/O操作的问题,kafka的协议是围绕消息集合构建的。Producer一次网络请求可以发送一个消息集合,而不是每一次只发一条消息。在server端是以消息块的形式追加消息到log中的,consumer在查询的时候也是一次查询大量的线性数据块。消息集合即MessageSet,实现本身是一个非常简单的API,它将一个字节数组或者文件进行打包。所以对消息的处理,这里没有分开的序列化和反序列化的上步骤,消息的字段可以按需反序列化(如果没有需要,可以不用反序列化)。 
另一个影响效率的问题就是字节拷贝。为了解决字节拷贝的问题,kafka设计了一种“标准字节消息”,Producer、Broker、Consumer共享这一种消息格式。Kakfa的message log在broker端就是一些目录文件,这些日志文件都是MessageSet按照这种“标准字节消息”格式写入到磁盘的。 
维持这种通用的格式对这些操作的优化尤为重要:持久化log 块的网络传输。流行的unix操作系统提供了一种非常高效的途径来实现页面缓存和socket之间的数据传递。在Linux操作系统中,这种方式被称作:sendfile system call(Java提供了访问这个系统调用的方法:FileChannel.transferTo api)。

为了理解sendfile的影响,需要理解一般的将数据从文件传到socket的路径:

  1. 操作系统将数据从磁盘读到内核空间的页缓存中
  2. 应用将数据从内核空间读到用户空间的缓存中
  3. 应用将数据写回内核空间的socket缓存中
  4. 操作系统将数据从socket缓存写到网卡缓存中,以便将数据经网络发出

这种操作方式明显是非常低效的,这里有四次拷贝,两次系统调用。如果使用sendfile,就可以避免两次拷贝:操作系统将数据直接从页缓存发送到网络上。所以在这个优化的路径中,只有最后一步将数据拷贝到网卡缓存中是需要的。 
我们期望一个主题上有多个消费者是一种常见的应用场景。利用上述的zero-copy,数据只被拷贝到页缓存一次,然后就可以在每次消费时被重得利用,而不需要将数据存在内存中,然后在每次读的时候拷贝到内核空间中。这使得消息消费速度可以达到网络连接的速度。这样以来,通过页面缓存和sendfile的结合使用,整个kafka集群几乎都已以缓存的方式提供服务,而且即使下游的consumer很多,也不会对整个集群服务造成压力。 
关于sendfile和zero-copy,请参考:zero-copy

五、Kafka集群部署

5.1 集群部署

为了提高性能,推荐采用专用的服务器来部署kafka集群,尽量与hadoop集群分开,因为kafka依赖磁盘读写和大的页面缓存,如果和hadoop共享节点的话会影响其使用页面缓存的性能。 
Kafka集群的大小需要根据硬件的配置、生产者消费者的并发数量、数据的副本个数、数据的保存时长综合确定。 
磁盘的吞吐量尤为重要,因为通常kafka的瓶颈就在磁盘上。 
Kafka依赖于zookeeper,建议采用专用服务器来部署zookeeper集群,zookeeper集群的节点采用偶数个,一般建议用3、5、7个。注意zookeeper集群越大其读写性能越慢,因为zookeeper需要在节点之间同步数据。一个3节点的zookeeper集群允许一个节点失败,一个5节点集群允许2个几点失败。

5.2 集群大小

有很多因素决定着kafka集群需要具备存储能力的大小,最准确的衡量办法就是模拟负载来测算一下,Kafka本身也提供了负载测试的工具。 
如果不想通过模拟实验来评估集群大小,最好的办法就是根据硬盘的空间需求来推算。下面我就根据网络和磁盘吞吐量需求来做一下估算。 
我们做如下假设:

  • W:每秒写多少MB
  • R :副本数
  • C :Consumer的数量

一般的来说,kafka集群瓶颈在于网络和磁盘吞吐量,所以我们先评估一下集群的网络和磁盘需求。 
对于每条消息,每个副本都要写一遍,所以整体写的速度是W*R。读数据的部分主要是集群内部各个副本从leader同步消息读和集群外部的consumer读,所以集群内部读的速率是(R-1)*W,同时,外部consumer读的速度是C*W,因此:

  • Write:W*R
  • Read:(R-1)*W+C*W

需要注意的是,我们可以在读的时候缓存部分数据来减少IO操作,如果一个集群有M MB内存,写的速度是W MB/sec,则允许M/(W*R) 秒的写可以被缓存。如果集群有32GB内存,写的速度是50MB/s的话,则可以至少缓存10分钟的数据。  

 二、kafka 安装

2.1 jdk安装

#以oracle jdk为例,下载地址http://java.sun.com/javase/downloads/index.jsp 

yum -y install jdk-8u141-linux-x64.rpm

 

2.2 安装zookeeper  

wget http://apache.forsale.plus/zookeeper/zookeeper-3.4.9/zookeeper-3.4.9.tar.gz
tar zxf zookeeper-3.4.9.tar.gz
mv zookeeper-3.4.9 /data/zk

 

修改配置文件内容如下所示: 

[root@localhost ~]# cat /data/zk/conf/zoo.cfg
tickTime=2000
initLimit=10
syncLimit=5
dataDir=/data/zk/data/zookeeper
dataLogDir=/data/zk/data/logs
clientPort=2181
maxClientCnxns=60
autopurge.snapRetainCount=3
autopurge.purgeInterval=1
 
server.1=zk01:2888:3888
server.2=zk02:2888:3888
server.3=zk03:2888:3888

 

参数说明:

server.id=host:port:port:表示了不同的zookeeper服务器的自身标识,作为集群的一部分,每一台服务器应该知道其他服务器的信息。用户可以从“server.id=host:port:port” 中读取到相关信息。在服务器的data(dataDir参数所指定的目录)下创建一个文件名为myid的文件,这个

文件的内容只有一行,指定的是自身的id值。比如,服务器“1”应该在myid文件中写入“1”。这个id必须在集群环境中服务器标识中是唯一的,且大小在1~255之间。这一样配置中,zoo1代表第一台服务器的IP地址。第一个端口号(port)是从follower连接到leader机器的
端口,第二个端口是用来进行leader选举时所用的端口。所以,在集群配置过程中有三个非常重要的端口:clientPort:2181、port:2888、port:3888。
关于zoo.cfg配置文件说明,参考连接https://zookeeper.apache.org/doc/r3.4.10/zookeeperAdmin.html#sc_configuration;

如果想更换日志输出位置,除了在zoo.cfg加入"dataLogDir=/data/zk/data/logs"外,还需要修改zkServer.sh文件,大概修改方式地方在125行左右,内容如下: 

125 ZOO_LOG_DIR="$($GREP "^[[:space:]]*dataLogDir" "$ZOOCFG" | sed -e 's/.*=//')"
126 if [ ! -w "$ZOO_LOG_DIR" ] ; then
127 mkdir -p "$ZOO_LOG_DIR"
128 fi

 

在启动服务之前,还需要分别在zookeeper创建myid,方式如下: 

echo 1 >  /data/zk/data/zookeeper/myid

 

启动服务

/data/zk/bin/zkServer.sh start

 

验证服务 

### 查看相关端口号[root@localhost ~]# ss -lnpt|grep java
LISTEN     0      50          :::34442                   :::*                   users:(("java",pid=2984,fd=18))
LISTEN     0      50       ::ffff:192.168.15.133:3888                    :::*                   users:(("java",pid=2984,fd=26))
LISTEN     0      50          :::2181                    :::*                   users:(("java",pid=2984,fd=25))###查看zookeeper服务状态
   
root@localhost ~]# /data/zk/bin/zkServer.sh status
    ZooKeeper JMX enabled by default
Using config: /data/zk/bin/../conf/zoo.cfgMode: follower

 

zookeeper相关命令说明,参考https://zookeeper.apache.org/doc/r3.4.10/zookeeperStarted.html (文末有说明);

2.3 安装kafka 

tar zxf kafka_2.11-0.11.0.0.tgz
mv kafka_2.11-0.11.0.0 /data/kafka

 修改配置 

[root@localhost ~]# grep -Ev "^#|^$" /data/kafka/config/server.properties
broker.id=0
delete.topic.enable=true
listeners=PLAINTEXT://192.168.15.131:9092
num.network.threads=3
num.io.threads=8
socket.send.buffer.bytes=102400
socket.receive.buffer.bytes=102400
socket.request.max.bytes=104857600
log.dirs=/data/kafka/data
num.partitions=1
num.recovery.threads.per.data.dir=1
offsets.topic.replication.factor=1
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1
log.flush.interval.messages=10000
log.flush.interval.ms=1000
log.retention.hours=168
log.retention.bytes=1073741824
log.segment.bytes=1073741824
log.retention.check.interval.ms=300000
zookeeper.connect=192.168.15.131:2181,192.168.15.132:2181,192.168.15.133:2181
zookeeper.connection.timeout.ms=6000
group.initial.rebalance.delay.ms=0

 

 

提示:其他主机将该机器的kafka目录拷贝即可,然后需要修改broker.id、listeners地址。有关kafka配置文件参数,参考:http://orchome.com/12;

启动服务 

/data/kafka/bin/kafka-server-start.sh /data/kafka/config/server.properties

 

 

验证服务 

### 随便在其中一台主机执行
/data/kafka/bin/kafka-topics.sh --create --zookeeper 192.168.15.131:2181,192.168.15.132:2181,192.168.15.133:2181 --replication-factor 1 --partitions 1 --topic test
 
###在其他主机查看
/data/kafka/bin/kafka-topics.sh --list --zookeeper 192.168.15.131:2181,192.168.15.132:2181,192.168.15.133:2181

 

参考:Kafka基本原理

参考:Kafka 设计与原理详解

posted @ 2018-04-13 15:30  aspirant  阅读(2160)  评论(0编辑  收藏  举报