Java图片比对

 

 在自动化测试中,除了普通的值验证,经常还有一些图片验证,比如图片的匹配率,输出图片的差异图片等。本文主要用到了BufferedImage类来操作图片比对和输出差异图片,大体的思路如下:

1. 通过ImageIO读入图片,生成相应的BufferedImage实例(Image操作流)

2. 修改目标图片的尺寸大小,以适应期望图片的大小(为像素比对做准备)

3. 获取每一个(width,height)的ARGB,并获取相应的Red, Green,Blue的值

4. 按照每个像素点的R,G,B进行比较(需要定义允许的R,G,B的误差)

5. 统计不同的像素点,生成diff图片

 

代码如下:

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import javax.imageio.ImageIO;
import java.awt.*;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.text.DecimalFormat;
 
 
public class ImageDiff {
 
    //不同的像素标记为红色
    public static final int RGB_RED = 16711680;
 
    //允许的Red,Green,Blue单个维度的像素差值
    public static final int DIFF_ALLOW_RANGE = 5;
 
    //不同像素点统计值
    public static int diffPointCount = 0;
 
    //从rgb值中抽取red
    public static int getRed(int rgbValue){
        return rgbValue & 0xff0000 >> 16;
    }
 
    //从rgb值中抽取green
    public static int getGreen(int rgbValue){
        return rgbValue & 0xff00 >> 8;
    }
 
    //从rgb值中抽取blue
    public static int getBlue(int rgbValue){
        return rgbValue & 0xff;
    }
 
    /**
     * 比较两图片,并用红色标出不同的像素点,然后保存差异图片到本地,打印匹配率
     * @param srcImgPath
     * @param targetImgPath
     */
    public static void compareImages(String srcImgPath,String targetImgPath){
        try {
            BufferedImage srcImg = ImageIO.read(new File(srcImgPath));
            BufferedImage targetImg = ImageIO.read(new File(targetImgPath));
 
            diffPointCount = 0;
            BufferedImage diffImg = srcImg;
 
            int srcHeight = srcImg.getHeight();
            int srcWidth = srcImg.getWidth();
 
            //修改待比较图片的尺寸以适应源图片的尺寸
            targetImg = changeImageSize(targetImg,srcHeight,srcWidth);
 
            int srcRgb;
            int targetRgb;
 
            for(int h = 0;h<srcHeight;h++){
                for(int w=0;w<srcWidth;w++){
                    srcRgb = srcImg.getRGB(w,h);
                    targetRgb = targetImg.getRGB(w,h);
                    if( Math.abs(getRed(srcRgb) - getRed(targetRgb))>DIFF_ALLOW_RANGE ||
                            Math.abs(getGreen(srcRgb) - getGreen(targetRgb))>DIFF_ALLOW_RANGE||
                            Math.abs(getBlue(srcRgb) - getBlue(targetRgb))>DIFF_ALLOW_RANGE){
                        diffImg.setRGB(w,h, RGB_RED);
                        diffPointCount++;
                    }
                }
            }
 
            //保存差异图片
            ImageIO.write(diffImg,"jpg",new File("diffImg.jpg"));
            System.out.println("保存差异图片成功!");
 
            //计算相似度(保留小数点后四位)
            int totalPixel = srcHeight*srcWidth;
            DecimalFormat decimalFormat = new DecimalFormat("#.####");
            double matchRate = (totalPixel-diffPointCount)/(totalPixel*1.0);
 
            System.out.println("图片相似度为: "+decimalFormat.format(matchRate)+"%");
 
        }catch (Exception ex){
            ex.printStackTrace();
        }
    }
 
 
    /**
     * 修改BufferedImage中的图片尺寸,以便和源图片进行比较
     * @param image
     * @param newHeight
     * @param newWidth
     * @return
     */
    public static BufferedImage changeImageSize(BufferedImage image,int newHeight,int newWidth){
        Image img = image.getScaledInstance(newWidth,newHeight,Image.SCALE_SMOOTH);
        int width = img.getWidth(null);
        int height = img.getHeight(null);
 
        //获取新图片的BufferedImage实例
        BufferedImage newBufferedImage = new BufferedImage(width, height,
                BufferedImage.TYPE_INT_ARGB);
        Graphics g = newBufferedImage.getGraphics();
        g.drawImage(img, 00null);
        g.dispose();
        return newBufferedImage;
    }
 
    public static void main(String[] args){
        compareImages("1.jpg","2.jpg");
    }
}

 

参考:Java图片比对

posted @ 2022-02-10 14:30  aspirant  阅读(510)  评论(0编辑  收藏  举报