Guava---缓存之LRU算法

GuavaCache学习笔记一:自定义LRU算法的缓存实现

 

前言

今天在看GuavaCache缓存相关的源码,这里想到先自己手动实现一个LRU算法。于是乎便想到LinkedHashMap和LinkedList+HashMap, 这里仅仅是作为简单的复习一下。

LRU

LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”。

代码实现原理

LinkedList + HashMap: LinkedList其实是一个双向链表,我们可以通过get和put来设置最近请求key的位置,然后hashMap去存储数据
LinkedHashMap:LinkedHashMap是继承自HashMap,只不过Map中的Node节点改为了双向节点,双向节点可以维护添加的顺序,在LinkedHashMap的构造函数中有一个accessOrder, 当设置为true后,put和get会自动维护最近请求的位置到last。

LinkedList+HashMap代码实现

LRUCache接口:

/**
 * @Description:
 * @Author: wangmeng
 * @Date: 2018/12/8-10:49
 */
public class LinkedListLRUTest {
    public static void main(String[] args) {
        LRUCache<String, String> cache = new LinkedListLRUCache<>(3);
        cache.put("1", "1");
        cache.put("2", "2");
        cache.put("3", "3");
        System.out.println(cache);

        cache.put("4", "4");
        System.out.println(cache);

        System.out.println(cache.get("2"));
        System.out.println(cache);
    }
}

LinkedList实现:

/**
 * @Description:使用LinkedList+HashMap来实现LRU算法
 * @Author: wangmeng
 * @Date: 2018/12/8-10:41
 */
public class LinkedListLRUCache<K, V> implements LRUCache<K, V> {

    private final int limit;
    private final LinkedList<K> keys = new LinkedList<>();
    private final Map<K, V> cache = Maps.newHashMap();

    public LinkedListLRUCache(int limit) {
        this.limit = limit;
    }

    @Override
    public void put(K key, V value) {
        Preconditions.checkNotNull(key);
        Preconditions.checkNotNull(value);
        if (keys.size() >= limit) {
            K oldesKey = keys.removeFirst();
            cache.remove(oldesKey);
        }

        keys.addLast(key);
        cache.put(key, value);
    }

    @Override
    public V get(K key) {
        boolean exist = keys.remove(key);
        if (!exist) {
            return null;
        }

        keys.addLast(key);
        return cache.get(key);
    }

    @Override
    public void remove(K key) {

        boolean exist = keys.remove(key);
        if (exist) {
            keys.remove(key);
            cache.remove(key);
        }
    }

    @Override
    public int size() {
        return keys.size();
    }

    @Override
    public void clear() {
        keys.clear();
        cache.clear();
    }

    @Override
    public int limit() {
        return this.limit;
    }

    @Override
    public String toString() {
        StringBuilder builder = new StringBuilder();
        for (K key : keys) {
            builder.append(key).append("=").append(cache.get(key)).append(";");
        }
        return builder.toString();
    }
}

LinkedList测试类:

/**
 * @Description:
 * @Author: wangmeng
 * @Date: 2018/12/8-10:49
 */
public class LinkedListLRUTest {
    public static void main(String[] args) {
        LRUCache<String, String> cache = new LinkedListLRUCache<>(3);
        cache.put("1", "1");
        cache.put("2", "2");
        cache.put("3", "3");
        System.out.println(cache);

        cache.put("4", "4");
        System.out.println(cache);

        System.out.println(cache.get("2"));
        System.out.println(cache);
    }
}

LinkedList测试类返回值:

1=1;2=2;3=3;
2=2;3=3;4=4;
2
3=3;4=4;2=2;

LinkedHashMap实现

/**
 * @Description: 不是一个线程安全的类,这里是使用LinkedHashMap来做LRU算法
 * @Author: wangmeng
 * @Date: 2018/12/8-10:14
 */
public class LinkedHashLRUCache<K, V> implements LRUCache<K, V> {

    private static class InternalLRUCache<K, V> extends LinkedHashMap<K, V> {

        final private int limit;
        private InternalLRUCache(int limit) {
            super(16, 0.75f, true);
            this.limit = limit ;
        }

        //实现remove元素的方法,这个是重写了LinkedHashMap中的方法。因为在HashMap的putVal会调用afterNodeInsertion(), 而这个方法会判断removeEldestEntry方法。
        @Override
        protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
            return size() > limit;
        }
    }


    private final int limit;
    //使用组合关系优于继承,这里只对外暴漏LRUCache中的方法
    private final InternalLRUCache<K, V> internalLRUCache;
    public LinkedHashLRUCache(int limit) {
        Preconditions.checkArgument(limit > 0, "The limit big than zero.");
        this.limit = limit;
        this.internalLRUCache = new InternalLRUCache(limit);

    }

    @Override
    public void put(K key, V value) {
        this.internalLRUCache.put(key, value);
    }

    @Override
    public V get(K key) {
        return this.internalLRUCache.get(key);
    }

    @Override
    public void remove(K key) {
        this.internalLRUCache.remove(key);
    }

    @Override
    public int size() {
        return this.internalLRUCache.size();
    }

    @Override
    public void clear() {
        this.internalLRUCache.clear();
    }

    @Override
    public int limit() {
        return this.limit;
    }

    @Override
    public String toString() {
        return internalLRUCache.toString();
    }
}

LinkedHashMap测试类:

/**
 * @Description:
 * @Author: wangmeng
 * @Date: 2018/12/8-10:30
 */
public class LinkedHashLRUTest {
    public static void main(String[] args) {
        LRUCache<String, String> cache = new LinkedHashLRUCache<>(3);
        cache.put("1", "1");
        cache.put("2", "2");
        cache.put("3", "3");
        System.out.println(cache);

        cache.put("4", "4");
        System.out.println(cache);

        System.out.println(cache.get("2"));
        System.out.println(cache);
    }
}

LinkedHashMap测试结果:

{1=1, 2=2, 3=3}
{2=2, 3=3, 4=4}
2
{3=3, 4=4, 2=2}

文章目录
简介
实现LRU
LinkedHashMap中LRU算法实现
简介
LRU全称是Least Recently Used,即最近最久未使用的意思。

LRU算法的设计原则是:如果一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很小。也就是说,当限定的空间已存满数据时,应当把最久没有被访问到的数据淘汰。

实现LRU
1.用一个数组来存储数据,给每一个数据项标记一个访问时间戳,每次插入新数据项的时候,先把数组中存在的数据项的时间戳自增,并将新数据项的时间戳置为0并插入到数组中。每次访问数组中的数据项的时候,将被访问的数据项的时间戳置为0。当数组空间已满时,将时间戳最大的数据项淘汰。

2.利用一个链表来实现,每次新插入数据的时候将新数据插到链表的头部;每次缓存命中(即数据被访问),则将数据移到链表头部;那么当链表满的时候,就将链表尾部的数据丢弃。

3.利用链表和hashmap。当需要插入新的数据项的时候,如果新数据项在链表中存在(一般称为命中),则把该节点移到链表头部,如果不存在,则新建一个节点,放到链表头部,若缓存满了,则把链表最后一个节点删除即可。在访问数据的时候,如果数据项在链表中存在,则把该节点移到链表头部,否则返回-1。这样一来在链表尾部的节点就是最近最久未访问的数据项。

对于第一种方法,需要不停地维护数据项的访问时间戳,另外,在插入数据、删除数据以及访问数据时,时间复杂度都是O(n)。对于第二种方法,链表在定位数据的时候时间复杂度为O(n)。所以在一般使用第三种方式来是实现LRU算法。

LinkedHashMap中LRU算法实现
/**
* @Author: Kingcym
* @Description: 非线程安全
* @Date: 2018/11/11 19:09
*/
public class LinkedHashLRUcache<k, v> {
/**
* LinkedHashMap(自身实现了LRU算法)
* 1.有序
* 2.每次访问一个元素,都会提到最后面去
*/
private static class InternalLRUcache<k, v> extends LinkedHashMap<k, v> {
private final int limit;

private InternalLRUcache(int limit) {
super(16, 0.75f, true);
this.limit = limit;
}

//是否删除最老的数据
@Override
protected boolean removeEldestEntry(Map.Entry<k, v> eldest) {
return size() > limit;
}
}

private final int limit;
private final InternalLRUcache<k, v> internalLRUcache;


public LinkedHashLRUcache(int limit) {
Assert.state(limit > 0, "limit必须大于0");
this.limit = limit;
this.internalLRUcache = new InternalLRUcache(limit);
}



public void put(k key, v value) {
this.internalLRUcache.put(key, value);
}

public v get(k key) {
return this.internalLRUcache.get(key);
}

public void remove(k key) {
this.internalLRUcache.remove(key);
}

public int size() {
return this.internalLRUcache.size();
}

public void clear() {
this.internalLRUcache.clear();
}

public String toString() {
return internalLRUcache.toString();
}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
当存在热点数据时,LRU的效率很好,但偶发性的、周期性的批量操作会导致LRU命中率急剧下降,缓存污染情况比较严重。
 


参考:GuavaCache学习笔记一:自定义LRU算法的缓存实现
posted @ 2019-10-24 20:42  aspirant  阅读(2344)  评论(0编辑  收藏  举报