Centos 6.5 配置hadoop2.7.1

 

1 Centos 6.5 编译hadoop2.7.1

 

主机配置:

 

 

sudo yum install gcc gcc-c++

sudo yum install ncurses-devel

 

sudo yum -y install lzo-devel zlib-devel autoconf automake libtool cmake openssl-devel

 

 

编译 mvn clean package -Pdist,native -DskipTests -Dtar

 

 

2配置hadoop2.7.1

1)core-site.xml (fs.defaultFS配置hdfs地址, DFS Master 端口)

2)hdfs-site.xml

 

3)mapred-site.xml

 

4)yarn-site.xml

 

 

3 eclipse连接hdfs

DFS Master port 为 8020, 即hdfs://hd1:8020中配置的端口

在hadoop1中,左边是job.tracker的端口号,右边是hdfs的端口号

 

 

查看文件系统:

bin/hadoop

 

hdfs dfs等价于hadoop fs

[grid_hd@hd1 hadoop-2.7.1]$ bin/hdfs dfs

Usage: hadoop fs [generic options]

    [-appendToFile <localsrc> ... <dst>]

    [-cat [-ignoreCrc] <src> ...]

    [-checksum <src> ...]

 

    [-chgrp [-R] GROUP PATH...] ##改变文件的所属组

    [-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...] ##改变文件的模式位

    [-chown [-R] [OWNER][:[GROUP]] PATH...] ##改变文件的所有者

 

    [-copyFromLocal [-f] [-p] [-l] <localsrc> ... <dst>]

    [-copyToLocal [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]

 

    [-moveFromLocal <localsrc> ... <dst>]

    [-moveToLocal <src> <localdst>]

 

    [-count [-q] [-h] <path> ...]

 

 

    [-createSnapshot <snapshotDir> [<snapshotName>]]

    [-deleteSnapshot <snapshotDir> <snapshotName>]

    [-renameSnapshot <snapshotDir> <oldName> <newName>]

 

    [-df [-h] [<path> ...]]

    [-du [-s] [-h] <path> ...]

    [-expunge]

 

    [-find <path> ... <expression> ...]

 

    [-get [-p] [-ignoreCrc] [-crc] <src> ... <localdst>]

    [-put [-f] [-p] [-l] <localsrc> ... <dst>]

 

    [-getmerge [-nl] <src> <localdst>]

 

    [-help [cmd ...]]

 

    [-ls [-d] [-h] [-R] [<path> ...]]

    [-mkdir [-p] <path> ...]

 

    [-mv <src> ... <dst>]

    [-cp [-f] [-p | -p[topax]] <src> ... <dst>]

 

    [-rm [-f] [-r|-R] [-skipTrash] <src> ...]

    [-rmdir [--ignore-fail-on-non-empty] <dir> ...]

 

    [-getfacl [-R] <path>]

    [-getfattr [-R] {-n name | -d} [-e en] <path>]

 

    [-setfacl [-R] [{-b|-k} {-m|-x <acl_spec>} <path>]|[--set <acl_spec> <path>]]

    [-setfattr {-n name [-v value] | -x name} <path>]

 

    [-setrep [-R] [-w] <rep> <path> ...]

    [-stat [format] <path> ...]

    [-tail [-f] <file>]

    [-test -[defsz] <path>]

    [-text [-ignoreCrc] <src> ...]

    [-touchz <path> ...]

    [-truncate [-w] <length> <path> ...]

    [-usage [cmd ...]]

 

Generic options supported are

-conf <configuration file>         specify an application configuration file 指定应用配置文件

-D <property=value>         use value for given property 指定给定属性的值

-fs <local|namenode:port>         specify a namenode

-jt <local|resourcemanager:port>     specify a ResourceManager

-files <comma separated list of files>             specify comma separated files to be copied to the map reduce cluster 指定逗号分隔的文件,将被拷贝到集群

-libjars <comma separated list of jars>             specify comma separated jar files to include in the classpath.

-archives <comma separated list of archives>     specify comma separated archives to be unarchived on the compute machines.

 

The general command line syntax is

bin/hadoop command [genericOptions] [commandOptions]

 

 

 

 

WordCount示例

 

import java.io.IOException;

import java.util.StringTokenizer;

 

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.util.GenericOptionsParser;

 

public class WordCount {

 

    public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {

 

        private final static IntWritable one = new IntWritable(1);

        private Text word = new Text();

 

        public void map(Object key, Text value, Context context) throws IOException, InterruptedException {

            StringTokenizer itr = new StringTokenizer(value.toString());

            while (itr.hasMoreTokens()) {

                word.set(itr.nextToken());

                context.write(word, one);

            }

        }

    }

 

    public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {

        private IntWritable result = new IntWritable();

 

        public void reduce(Text key, Iterable<IntWritable> values, Context context)

                throws IOException, InterruptedException {

            int sum = 0;

            for (IntWritable val : values) {

                sum += val.get();

            }

            result.set(sum);

            context.write(key, result);

        }

    }

 

    public static void main(String[] args) throws Exception {

        

        

        Configuration conf = new Configuration();

          

        

        

        String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();

        

        if (otherArgs.length < 2) {

            System.err.println("Usage: wordcount <in> [<in>...] <out>");

            System.exit(2);

        }

        Job job = Job.getInstance(conf, "word count");

        job.setJarByClass(WordCount.class);

        job.setMapperClass(TokenizerMapper.class);

        job.setCombinerClass(IntSumReducer.class);

        job.setReducerClass(IntSumReducer.class);

        job.setOutputKeyClass(Text.class);

        job.setOutputValueClass(IntWritable.class);

        for (int i = 0; i < otherArgs.length - 1; ++i) {

            FileInputFormat.addInputPath(job, new Path(otherArgs[i]));

        }

        FileOutputFormat.setOutputPath(job, new Path(otherArgs[otherArgs.length - 1]));

        System.exit(job.waitForCompletion(true) ? 0 : 1);

    }

}

 

 

运行输出:

INFO - session.id is deprecated. Instead, use dfs.metrics.session-id

INFO - Initializing JVM Metrics with processName=JobTracker, sessionId=

WARN - No job jar file set. User classes may not be found. See Job or Job#setJar(String).

INFO - Total input paths to process : 1

INFO - number of splits:1

INFO - Submitting tokens for job: job_local498662469_0001

INFO - The url to track the job: http://localhost:8080/

INFO - Running job: job_local498662469_0001

INFO - OutputCommitter set in config null

INFO - File Output Committer Algorithm version is 1

INFO - OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter

INFO - Waiting for map tasks

INFO - Starting task: attempt_local498662469_0001_m_000000_0

INFO - File Output Committer Algorithm version is 1

INFO - Using ResourceCalculatorProcessTree : [ ]

INFO - Processing split: hdfs://hd1:8020/input/file_test.txt:0+23

INFO - (EQUATOR) 0 kvi 26214396(104857584)

INFO - mapreduce.task.io.sort.mb: 100

INFO - soft limit at 83886080

INFO - bufstart = 0; bufvoid = 104857600

INFO - kvstart = 26214396; length = 6553600

INFO - Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer

INFO -

INFO - Starting flush of map output

INFO - Spilling map output

INFO - bufstart = 0; bufend = 39; bufvoid = 104857600

INFO - kvstart = 26214396(104857584); kvend = 26214384(104857536); length = 13/6553600

INFO - Finished spill 0

INFO - Task:attempt_local498662469_0001_m_000000_0 is done. And is in the process of committing

INFO - map

INFO - Task 'attempt_local498662469_0001_m_000000_0' done.

INFO - Finishing task: attempt_local498662469_0001_m_000000_0

INFO - map task executor complete.

INFO - Waiting for reduce tasks

INFO - Starting task: attempt_local498662469_0001_r_000000_0

INFO - File Output Committer Algorithm version is 1

INFO - Using ResourceCalculatorProcessTree : [ ]

INFO - Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@35cd1d03

INFO - MergerManager: memoryLimit=623902720, maxSingleShuffleLimit=155975680, mergeThreshold=411775808, ioSortFactor=10, memToMemMergeOutputsThreshold=10

INFO - attempt_local498662469_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events

INFO - localfetcher#1 about to shuffle output of map attempt_local498662469_0001_m_000000_0 decomp: 37 len: 41 to MEMORY

INFO - Read 37 bytes from map-output for attempt_local498662469_0001_m_000000_0

INFO - closeInMemoryFile -> map-output of size: 37, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->37

INFO - EventFetcher is interrupted.. Returning

INFO - 1 / 1 copied.

INFO - finalMerge called with 1 in-memory map-outputs and 0 on-disk map-outputs

INFO - Merging 1 sorted segments

INFO - Down to the last merge-pass, with 1 segments left of total size: 29 bytes

INFO - Merged 1 segments, 37 bytes to disk to satisfy reduce memory limit

INFO - Merging 1 files, 41 bytes from disk

INFO - Merging 0 segments, 0 bytes from memory into reduce

INFO - Merging 1 sorted segments

INFO - Down to the last merge-pass, with 1 segments left of total size: 29 bytes

INFO - 1 / 1 copied.

INFO - mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords

INFO - Task:attempt_local498662469_0001_r_000000_0 is done. And is in the process of committing

INFO - 1 / 1 copied.

INFO - Task attempt_local498662469_0001_r_000000_0 is allowed to commit now

INFO - Saved output of task 'attempt_local498662469_0001_r_000000_0' to hdfs://hd1:8020/output/count/_temporary/0/task_local498662469_0001_r_000000

INFO - reduce > reduce

INFO - Task 'attempt_local498662469_0001_r_000000_0' done.

INFO - Finishing task: attempt_local498662469_0001_r_000000_0

INFO - reduce task executor complete.

INFO - Job job_local498662469_0001 running in uber mode : false

INFO - map 100% reduce 100%

INFO - Job job_local498662469_0001 completed successfully

INFO - Counters: 35

 

    File System Counters

        FILE: Number of bytes read=446

        FILE: Number of bytes written=552703

        FILE: Number of read operations=0

        FILE: Number of large read operations=0

        FILE: Number of write operations=0

        HDFS: Number of bytes read=46

        HDFS: Number of bytes written=23

        HDFS: Number of read operations=13

        HDFS: Number of large read operations=0

        HDFS: Number of write operations=4

 

    Map-Reduce Framework

        Map input records=3

        Map output records=4

        Map output bytes=39

        Map output materialized bytes=41

        Input split bytes=100

        Combine input records=4

        Combine output records=3

        Reduce input groups=3

        Reduce shuffle bytes=41

        Reduce input records=3

        Reduce output records=3

        Spilled Records=6

        Shuffled Maps =1

        Failed Shuffles=0

        Merged Map outputs=1

        GC time elapsed (ms)=38

        Total committed heap usage (bytes)=457703424

 

    Shuffle Errors

        BAD_ID=0

        CONNECTION=0

        IO_ERROR=0

        WRONG_LENGTH=0

        WRONG_MAP=0

        WRONG_REDUCE=0

 

    File Input Format Counters

        Bytes Read=23

 

    File Output Format Counters

        Bytes Written=23

 

 

 

posted @ 2015-07-19 15:28  asnjudy  阅读(816)  评论(0编辑  收藏  举报