Derivative norm vector repect to time 《PBM by Pixar》 Appendix D.2 code
Vector Calculus
1 Derivative normal vector repect to time
Let's denote the unit normal vector as:
Where \(\times\) denotesthecrossproduct,and \(\parallel \cdot \parallel\) denotes the norm.
Now, let's find the time derivative \(\frac{d\mathbf{n}}{dt}\).
We'll use the product rule, chain rule, and quotient rule as necessary.
1.1 Derivative vector norm repect to time
Let's denote \(\mathbf{v}=\mathbf{e}_a\times\mathbf{e}_b\). The norm of v is given by \(\|\mathbf{v}\|=\sqrt{\mathbf{v}\cdot\mathbf{v}}.\)
Now, let's find the derivative of the norm with respect to time \(t\)
Applying the chain rule and the product rule:
Now, expand the dot product \(\mathbf{v}\cdot\mathbf{v}:\)
Apply the product rule and the chain rule:
X Ref
如果我的工作对您有帮助,您想回馈一些东西,你可以考虑通过分享这篇文章来支持我。我非常感谢您的支持,真的。谢谢!
作者:Dba_sys (Jarmony)
转载以及引用请注明原文链接:https://www.cnblogs.com/asmurmur/p/17909669.html
本博客所有文章除特别声明外,均采用CC 署名-非商业使用-相同方式共享 许可协议。