数据结构——5、树——5、图

2.3图
2.3.1图的概念
究竟什么是图呢?大家先来想一想咱们常用的互联网产品。
微信中,许许多多的用户组成了一个多对多的朋友关系网,这个关系网就是数据结构当中的图(Graph)。

再举一个栗子,咱们在用百度地图的时候,常常会使用导航功能。比如你在地铁站A附近,你想去的地点在地铁站F附近,那么导航会告诉你一个最佳的地铁线路换乘方案。

这许许多多地铁站所组成的交通网络,也可以认为是数据结构当中的图。

图,是一种比树更为复杂的数据结构。树的节点之间是一对多的关系,并且存在父与子的层级划分;而图的顶点(注意,这里不叫节点)之间是多对多的关系,并且所有顶点都是平等的,无所谓谁是父谁是子。

2.3.2图的基本术语:

在图中,最基本的单元是顶点(vertex),相当于树中的节点。顶点之间的关联关系,被称为边(edge)。

在有些图中,每一条边并不是完全等同的。比如刚才地铁线路的例子,从A站到B站的距离是3公里,从B站到C站的距离是5公里......这样就引入一个新概念:边的权重(Weight)。涉及到权重的图,被称为带权图(Weighted Graph)。

还有一种图,顶点之间的关联并不是完全对称的。还拿微信来举例,你的好友列表里有我,但我的好友列表里未必有你。
这样一来,顶点之间的边就有了方向的区分,这种带有方向的图被称为有向图。

相应的,在QQ当中,只要我把你从好友里删除,你在自己的好友列表里也就看不到我了。(貌似是这样)

因此,QQ的好友关系可以认为是一个没有方向区分的图,这种图被称为无向图。
2.3.3内存中存储图
图在内存中存储的方式有很多种,如邻接矩阵、邻接表、逆邻接表、十字链表
2.3.3.1邻接矩阵
拥有n个顶点的图,它所包含的连接数量最多是n(n-1)个(考虑方向,则是n(n-1)/2,不考虑方向,则是n(n-1))。
因此,要表达各个顶点之间的关联关系,最清晰易懂的方式是使用二维数组(矩阵)。

具体如何表示呢?我们首先来看看无向图的矩阵表示:

如图所示,
顶点0和顶点1之间有边关联,那么矩阵中的元素A[0][1]与A[1][0]的值就是1;
顶点1和顶点2之间没有边关联,那么矩阵中的元素A[1][2]与A[2][1]的值就是0。
像这样表达图中顶点关联关系的矩阵,就叫做邻接矩阵。

需要注意的是,矩阵中的从左上到右下,这一条对角线,其上的元素值必然是0。这样很容易想明白:任何一个顶点与它自身是没有连接的。
同时,无向图对应的矩阵是一个对称矩阵,V0和V1有关联,那么V1和V0也必定有关联,因此A[0][1]和A[1][0]的值一定相等。

那么,有向图的邻接矩阵又是什么样子呢?

从图中可以看出,
有向图不再是一个对称矩阵。从V0可以到达V1,从V1却未必能到达V0,因此A[0][1]和A[1][0]的值不一定相等。

邻接矩阵的优点是什么呢?
简单直观,可以快速查到一个顶点和另一顶点之间的关联关系。

邻接矩阵的缺点是什么呢?
占用了太多的空间。
试想,如果一个图有1000个顶点,其中只有10个顶点之间有关联(这种情况叫做稀疏图),却不得不建立一个1000X1000的二维数组,实在太浪费了。
2.3.3.2邻接表和逆邻接表
为了解决邻接矩阵占用空间的问题,人们想到了另一种图的表示方法:邻接表。

在邻接表中,图的每一个顶点都是一个链表的头节点,其后连接着该顶点能够直接达到的相邻顶点。
很明显,这种邻接表的存储方式,占用的空间比邻接矩阵要小得多。

要想查出从顶点0能否到达顶点1,该怎么做呢?
很简单,我们从顶点0开始,顺着链表的头节点向后遍历,看看后继的节点中是否存在顶点1。
要想查出顶点0能够到达的所有相邻节点,也很简单,
从顶点0向后的所有链表节点,就是顶点0能到达的相邻节点。

那么,要想查出有哪些节点能一步到达顶点1,又该怎么做呢?
这样就麻烦一些了,我们要遍历每一个顶点所在的链表,看看链表节点中是否包含节点1,最后发现顶点0和顶点3可以到达顶点1。
像这种逆向查找的麻烦,该如何解决呢?我们可以是用逆邻接表来解决。

逆邻接表顾名思义,和邻接表是正好相反的。逆邻接表每一个顶点作为链表的头节点,后继节点所存储的是能够直接达到该顶点的相邻顶点。

这样一来,要想查出有哪些节点能一步到达顶点1就容易了,从顶点1向后的所有链表节点,就是能一步到达顶点1的节点。

因此,我们可以根据实际需求,选择使用邻接表还是逆邻接表。
2.3.3.3十字链表
这样一来,一张图需要维护正反两个邻接表,可以直接使用十字链表,该表将邻接表和逆邻接表结合在了一起

如图所示,
十字链表的每一个顶点,都是两个链表的根节点,
其中一个链表存储着该顶点能到达的相邻顶点,
另一个链表存储着能到达该顶点的相邻节点。

不过,上图只是一个便于理解的示意图,我们没有必要把链表的节点都重复存储两次。在优化之后的十字链表中,链表的每一个节点不再是顶点,而是一条边,里面包含起止顶点的下标。
十字链表节点和边的对应关系,如下图所示:

优化后的图中:
每一条带有蓝色箭头的链表,存储着从顶点出发的边;
每一条带有橙色箭头的链表,存储着进入顶点的边。
初学十字链表的时候,可能会觉得有些乱。

2.3.4总结
1.我们这一次介绍了图的定义和分类。根据图的边是否有方向,可分为有向图和无向图。根据图的边是否有权重,可分为带权图和无权图。当然,也可以把两个维度结合起来描述,比如有向带权图,无向无权图等等。

2.图的表示方法有很多种。包括邻接矩阵、邻接表、逆邻接表、十字链表。(还有一种邻接多重表,有兴趣的小伙伴可以自学下)

posted on 2021-09-30 10:07  夜萤火虫和你  阅读(271)  评论(0编辑  收藏  举报

导航