spark 密集向量和稀疏向量

1、概念

稀疏向量和密集向量都是向量的表示方法
密集向量和稀疏向量的区别: 密集向量的值就是一个普通的Double数组 而稀疏向量由两个并列的 数组indices和values组成 
例如:向量(1.0,0.0,1.0,3.0)用密集格式表示为[1.0,0.0,1.0,3.0],
用稀疏格式表示为(4,[0,2,3],[1.0,1.0,3.0]) 第一个4表示向量的长度(元素个数),[0,2,3]就是indices数组,[1.0,1.0,3.0]是values数组 表示向量0的位置的值是1.0,2的位置的值是1.0,而3的位置的值是3.0,其他的位置都是0

2、创建

import org.apache.spark.mllib.linalg.{Vector, Vectors}

// Create a dense vector (1.0, 0.0, 3.0).
val dv: Vector = Vectors.dense(1.0, 0.0, 3.0)
// Create a sparse vector (1.0, 0.0, 3.0) by specifying its indices and values corresponding to nonzero entries.
val sv1: Vector = Vectors.sparse(3, Array(0, 2), Array(1.0, 3.0))
// Create a sparse vector (1.0, 0.0, 3.0) by specifying its nonzero entries.
val sv2: Vector = Vectors.sparse(3, Seq((0, 1.0), (2, 3.0)))

3、代码段,通过HashingTF将单词转成稀疏向量,向量值是单词命中的次数。参考地址:https://github.com/asker124143222/spark-demo

    val training: DataFrame = lineRDD.map(line => {
      val strings: Array[String] = line.split(",")
      if (strings.length == 3) {
        (strings(0), strings(1), strings(2).toDouble)
      }
      else {       
        ("-1", strings.mkString(" "), 0.0)
      }

    }).filter(s => !s._1.equals("-1"))
      .toDF("id", "text", "label")

    //Transformer,转换器,字符解析,转换输入文本,以空格分隔,转成小写词
    val tokenizer: Tokenizer = new Tokenizer()
      .setInputCol("text")
      .setOutputCol("words")


    //Transformer,转换器,哈希转换,以哈希方式将词转换成词频,转成特征向量
    val hashTF: HashingTF = new HashingTF()
      .setNumFeatures(1000) //缺省是2^18
      .setInputCol(tokenizer.getOutputCol).setOutputCol("features")

    //打印hashingTF生成的稀疏向量长什么样
    val wordsData = tokenizer.transform(training)
    val hashData = hashTF.transform(wordsData)
    hashData.collect().foreach(println)

    //[0,why hello world JAVA,1.0,WrappedArray(why, hello, world, java),(1000,[48,150,967,973],[1.0,1.0,1.0,1.0])]
    //向量长度1000,即使hash桶的数量,和setNumFeatures的值一致,然后索引是[48,150,967,973],即是hash桶的索引,值都是1.0,即是命中hash桶的次数
posted @ 2020-01-06 17:23  我是属车的  阅读(858)  评论(0编辑  收藏  举报